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We consider the product ranking challenge that online retailers face when their customers typically behave

as “window shoppers”: they form an impression of the assortment after browsing products ranked in the

initial positions and then decide whether to continue browsing. We design online learning algorithms for

product ranking that maximize the number of customers who engage with the site. Customers’ product

preferences and attention spans are correlated and unknown to the retailer; furthermore, the retailer cannot

exploit similarities across products owing to the fact that the products are not necessarily characterized by

a set of attributes. We develop a class of online learning-then-earning algorithms that prescribe a ranking

to offer each customer, learning from preceding customers’ clickstream data to offer better rankings to

subsequent customers. Our algorithms balance product popularity with diversity : the notion of appealing

to a large variety of heterogeneous customers. We prove that our learning algorithms converge to a ranking

that matches the best-known approximation factors for the offline, complete information setting. Finally,

we partner with Wayfair - a multi-billion dollar home goods online retailer - to estimate the impact of our

algorithms in practice via simulations using actual clickstream data, and we find that our algorithms yield

a significant increase (5-30%) in the number of customers that engage with the site.
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1. Introduction

Over the last decade, online retail has experienced significant growth and is becoming a larger

portion of the retail industry. Online retailers1 face many new operational opportunities to drive

customer engagement and revenue growth. One such opportunity is the decision of how to rank

products on their website. It is well established in the academic literature and known by retailers

that more customers view products ranked in top positions compared to products ranked towards

the bottom of the page where customers must scroll down to view. Furthermore, the product

ranking can have a causal effect on the number of products searched (see, e.g., Ursu (2018)).

Thus, the ranking of products is an important decision since this allows the retailer to control

which products are seen by most customers, impacting the customers’ browsing behavior, purchase

decisions, and long-term interest in the retailer.

In this paper, we study the ranking challenge in a particular setting that, to the best of our

knowledge, is yet to be studied in the academic literature. We consider a retailer selling products

that are not necessarily characterized by a set of attributes; this could be because, e.g., (i) the

products are not substitutes and thus do not share common attributes, (ii) the products are stylistic

in nature and thus attributes would be subjective (e.g., whether or not an item of furniture is

considered contemporary), or (iii) the retailer simply does not record attribute information. The

typical customer (she) does not have a good idea of the assortment or style of products offered,

and may not have a particular product in mind that she is looking for. She forms an opinion about

the assortment and style after browsing products in the initial ranks; we define the customer’s

“first impression window” as the number of products she views to help form her initial opinion,

which may differ by customer and is unknown to the retailer. Many retailers face such customers.

In general, retailers who change their assortment of products frequently relative to the frequency

of a customer’s visit likely face such customer behavior.

1 We will refer to any retailer with an online presence, regardless of whether they also have brick-and-mortar stores,

as an “online retailer”. When the context is clear, we will refer to online retailers as simply “retailers” for brevity.
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We assume that each customer browses products in the initial ranks up to her first impression

window, and if she sees a product that she likes, she is “hooked” and continues browsing in hopes

of finding additional products that she likes. If she does not see a product she likes within her

first impression window, she believes she may not find anything she likes in the assortment and

therefore leaves the site2 early. Customers click on products that they like in order to learn details

about the product (e.g., sizes available, dimensions, material, etc.). In contrast to other literature

on product ranking, we do not assume that customers are shopping with the intent to purchase

at most one product from a set of substitutable products offered by the retailer, although our

model allows for this behavior; instead, we are motivated by settings where customers browse a set

of products that are not necessarily substitutable and may like, and perhaps purchase, multiple

products. The retailer observes the set of products that customers like via clicks and dynamically

changes the product ranking over time to learn the ranking that maximizes the number of hooked

customers, or equivalently, minimizes the number of customers who do not see anything they like

and abandon the site prematurely.

Customers in our setting are analogous to “window shoppers” in brick-and-mortar retail. In a

physical mall, window shoppers stroll through the mall looking at products in the retailers’ display

cases to learn about the assortment of products the retailer is offering. If they see a product they

like, they are hooked and enter the store to browse more products; otherwise, they avoid the

store altogether. The online retailer’s goal of maximizing the number of hooked customers - the

number of customers who engage with the site - is analogous to the brick-and-mortar retailer’s

goal of maximizing store traffic, a key customer engagement metric for many retailers. Although

the objective of profit maximization is more commonly studied in the academic literature, many

retailers in competitive markets have the primary objective of maximizing market share and use

such customer engagement metrics to do so, including the retailer we partnered with for this

2 “Site” refers to the page(s) that display products in an assortment, which may include only a subset of products

the retailer offers.
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research, Wayfair (www.wayfair.com) - a multi-billion dollar home goods online retailer. That said,

we show that we can extend our model, analysis, and results to other common objectives such as

maximizing revenue (or profit) and maximizing total clicks in Appendix B.

In order to maximize the number of hooked customers, the retailer must consider both product

popularity and diversity in its ranking decisions. Popularity is an obvious consideration: by includ-

ing a very popular product in a top rank, the retailer can hook many customers. Interestingly,

ranking by popularity is one of the most common ranking approaches studied in the academic liter-

ature and implemented in practice. However, diversity (or variety) of products is also an important

notion; here, we consider two products as being diverse if the set of customers that each hooks has

little or no overlap. Two products that are very popular may hook the same customers. Incorpo-

rating diversity allows the retailer to hook a broader base of customers. Importantly, we note that

our definition of diversity does not require a priori knowledge about how similar the products in

the assortment are, which in other diverse ranking literature is often calculated as a function of

product attributes; in fact, we do not require that products are characterized by a set of attributes.

Rather, in our work, we must learn diversity over time by observing customer clickstream data.

Our main contributions in this paper are three-fold. First, we introduce and study the product

ranking challenge for retailers who often face “window shopping” consumer behavior. This type

of consumer shopping behavior is well recognized in the consumer psychology literature as “hedo-

nic browsing” (see, e.g., Moe (2003)), which cites the importance of offering such consumers a

diverse set of products, and we are the first to consider the ranking decision for retailers facing

such customers. Our model highlights the importance of both product popularity and diversity

considerations when making ranking decisions.

Second, we develop a class of prescriptive, dynamic ranking algorithms that balance popularity

and diversity to learn the ranking that maximizes the number of hooked customers. In the (unre-

alistic) complete information setting - where the retailer knows the joint distribution of customers’

product interests along with their first impression windows - we relate a special case of our model
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to the maximum coverage problem and extend its well-known greedy algorithm to our more general

model. Then, when the retailer has no prior knowledge of product interests and first impression

windows, we develop algorithms that dynamically learn the greedy ranking from the complete

information setting by offering different rankings over time. Our algorithms circumvent having to

learn the joint distribution of customers’ product interests and their first impression windows, and

instead learn the optimal ranking directly. The algorithms that we propose vary based on their

tradeoff of optimality gap vs. speed of learning and can thus be applied to retailers of varying sizes.

For our third contribution, we partner with Wayfair to develop a realistic model and imple-

mentable algorithms, and ultimately estimate their impact via simulations using actual clickstream

data. Across six different product assortments, our algorithms hook an average of 5-30% more cus-

tomers than Wayfair’s static, popularity-based ranking. Furthermore, our algorithms hook 89-95%

of the total number of customers hooked by an (omniscient) offline benchmark. These simulations

using real clickstream data illustrate that our algorithmic contributions can make a significant

impact in practice.

1.1. Related Literature

Connections to Product Ranking Product ranking has been well-studied in the academic

literature, although there are key differences in modeling assumptions and analysis between this

stream of work and ours. We compare the major aspects of the most relevant product ranking

papers in Table 1 and speak to their implications below.

First, all product ranking papers assume that customers are shopping with the intent to pur-

chase at most one product from a set of substitutable products offered by the retailer. Making

this assumption and considering sequential, costly search, many of these papers build upon the

seminal paper by Weitzman (1979) and model the consumer’s shopping behavior as an optimal

stopping problem, trading off the cost of searching one more product vs. its expected utility. Most

other papers use a multinomial logit (MNL) model. As mentioned previously, we do not assume

that customers shop with the intent to purchase at most one product from a set of substitutable
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Assumes

customers

buy at

most one

product

Models as

optimal

stopping

problem

(OSP) or

MNL

Assumes

independent

utility /

interest across

products

Assumes a priori

full knowledge of

products’ intrinsic

utilities and

distribution of

random utilities

Descriptive

(D) vs.

Prescriptive

(P)

Aouad and Segev

(2020)

X MNL X P

Chen and Yao (2016) X OSP X X D

De Los Santos and

Koulayev (2017)

X OSP X X P

Donnelly et al. (2020) X X P

Dzyabura and Hauser

(2019)

X OSP D

Gallego et al. (2020) X MNL P

Ghose et al. (2012) X MNL X X P

Derakhshan et al.

(2020)

X OSP X P

Kim et al. (2016) X OSP X X D

Koulayev (2014) X OSP X D

Ursu (2018) X OSP X X D

Table 1 Modeling Assumptions and Analysis Techniques in Product Ranking Literature

products, although our model allows for this behavior; rather, we are motivated by settings where

customers exhibit hedonic browsing behavior (window shopping) and products are not necessarily

substitutable. Due to this difference, modeling our problem using the optimal stopping framework

of Weitzman (1979) or a choice model like the MNL model is not appropriate for our setting.

Hedonic browsing shopping behavior is well recognized in the consumer psychology literature

(see, e.g., Moe (2003)). Browsing has been further described in the consumer behavior literature

as a screening activity that is independent of any purchase needs (Bloch et al. 1989). Research

has shown that first impressions matter; for example, Dawson and Kim (2010) suggests that if

a shopper is not hooked within 30 seconds of browsing the site, she will leave. Cho and Youn-

Kyung (2012) suggests that shoppers form a quick judgment of the assortment after viewing a few

products, which may or may not warrant further exploration. We capture this initial screening

behavior and time spent on the site via the customer’s first impression window.
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Second, most product ranking papers assume for tractability that customer interest in any two

products is independent. We do not make this assumption, and in fact, our learning algorithm

converges to the well-studied popularity ranking when independence holds.

Third, most other papers assume for tractability that the intrinsic utilities of products, as well

as the distribution of random utilities, are known to the retailer and customers before customers

actually view the products. We do not make this assumption and instead use a basic model of

customer learning. In Dzyabura and Hauser (2019), customers learn their preferences for product

attributes as they search. In Derakhshan et al. (2020), consumers learn their intrinsic product

utilities as they browse products. Although Aouad and Segev (2020) and Gallego et al. (2020) do

not consider customer learning, they do assume exogenous first impression windows as do we. Even

with critical differences in modeling assumptions, Gallego et al. (2020) proposes an algorithm that

is similar in spirit to our offline algorithm; that said, their analysis does not extend to our model.

Finally, many of these papers are descriptive in nature, evaluating the impact of a static ranking

on consumer behavior. In contrast, our work is prescriptive, in that we aim to find a ranking that

maximizes a retailer’s objective. The other papers that are prescriptive in nature consider offline

algorithms that produce a static ranking, whereas ours presents an online learning algorithm that

dynamically changes rankings to learn the best ordering over time.

Connections to Choice Models with Consideration Sets: The concept of the first impres-

sion window in our consumer behavior model bears similarities to consumer choice models with

consideration sets,3 where our consumer’s decision is whether or not to continue browsing past her

first impression window. Recently, consider-then-choose and similar two-stage models have been

gaining popularity (see, e.g., Wang and Sahin (2018), Derakhshan et al. (2020), Jagabathula and

Rusmevichientong (2017), and Aouad et al. (2015)); in such models, consumers first decide the

subset of products that they will consider (i.e., their consideration set) and subsequently view

3 In such models, consumers incur a non-zero search cost to view and consider products, and thus may only view a

subset of all products offered.
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these products to learn their utilities prior to making a purchase decision. Often, consider-then-

choose models assume that customers know their intrinsic utilities or certain attributes for each

product prior to viewing products and use this information to form the consideration set. When

this assumption is not made, as in our work, the consider-then-choose model is also known as a

fixed sample size model (De Los Santos et al. 2012), where the customer finds the products to be

a priori indistinguishable. She then chooses any sample of k products to consider before making

a decision. Part of our consumer behavior model is analogous to a fixed sample size model where

the “fixed sample size” is her first impression window, kt, and the “decision” is whether or not

she is hooked and continues browsing; namely, our customer browses an a priori fixed number of

products, kt, prior to deciding whether or not she is hooked. Empirical work in an e-commerce

setting has shown that such fixed sample size models may be more appropriate for certain settings

than consideration set models based on sequential search (De Los Santos et al. 2012). It is worth

noting that other product ranking papers also use a fixed sample size consumer behavior model

(see, e.g., Aouad and Segev (2020) and Gallego et al. (2020)).

We highlight that the main difference between our model and choice models with consideration

sets is the shopping intention of the customer. Choice models with consideration sets are appropri-

ate for customers who intend to purchase at most one product from a set of substitutable products;

whereas our model is more appropriate for customers who exhibit hedonic browsing behavior and

for products that are not necessarily substitutes. Consequently, the customer’s goal in our con-

sumer behavior model - where customers view products within their first impression window - is

primarily aimed at deciding whether or not to continue browsing, whereas the customer’s goal in

the first stage of consider-then-choose models is to narrow down the set of products that they will

ultimately consider for purchase.

Connections to Learning Algorithms Motivated by applications in information retrieval,

web search, and recommendation systems, there are many recent papers on learning algorithms for

information ranking. Much of this work uses clickstream data to infer optimal static rankings, so we
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only highlight the recent work pertaining to online learning algorithms, namely under the cascade

and position-based user behavior models. In the cascade model (Kveton et al. 2015a,b) there is

only one user type with a fixed but unknown set of click probabilities for each item and a known

first impression window (k), and the objective is - analogous to ours - to select k items to minimize

the probability of customer abandonment. However, such a model does not account for varying

and unknown first impression windows that lead to the behavioral effect that fewer customers view

products at lower ranks; in addition, these models assume that customer interest in a product does

not depend on previous products clicked on, whereas we do not make this assumption. The cascade

model essentially captures a subset selection problem since altering the order in which the k items

are displayed does not affect the reward.

In the position-based model of learning-to-rank, the customer’s utility or click probability for an

item is the product of a position-specific and item-specific component (Lagrée et al. 2016). More

generally, this model is motivated by the literature on sponsored search and position auctions (Var-

ian 2007); similarly, Abeliuk et al. (2016) study an assortment selection problem pertaining to

online advertising where the consumer behavior model is MNL, with the weights being the prod-

uct of position-specific and item-specific components. Interestingly, position-based models could

be considered a special case of our consumer behavior model where (i) customers’ product inter-

est probabilities and first impression windows are independent, (ii) customers have homogeneous

product interest probabilities, and (iii) customer interest in a product does not depend on previ-

ous products clicked on. Our more general model relaxes these strict assumptions, which leads to

materially different results. Recent research has attempted to bridge the gap between the cascade

and position-based models by proposing more general approaches (Zoghi et al. 2017). In all of

these works, the optimal ranking is simply the ‘popularity ranking’ obtained by sorting the items

in descending order of click probabilities.

Our work is also related to the relatively small literature on learning optimal assortments (see,

e.g., Agrawal et al. (2016), Bernstein et al. (2018), and Ulu et al. (2012)). Similar to ours, papers
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in this area propose offering dynamic assortments over time to learn an optimal assortment. Key

differences include (i) these papers either assume customers buy at most one product or that

product interest is independent for each product, and (ii) customers observe all products in the

assortment, i.e. the first impression window is known and identical for all customers. Finally, there

is a larger literature on offline, static assortment optimization without learning, some of which

results in diverse assortments (see, e.g., Li et al. (2015a)); the same key differences exist.

Connections to Online Submodular Optimization: Our model bears strong similarities to

the well-studied stochastic submodular optimization problem (Asadpour and Nazerzadeh 2015),

and in particular, a special case of our model has been studied in Radlinski et al. (2008), which

focused on designing online algorithms for the selection of diverse search results. Although this

work allows for heterogeneous customer types, all customers examine the same number of products

(i.e., identical first impression windows) and customer interest in a product is assumed to be

independent of previous products clicked on. Hence, the problem is more analogous to optimal

selection (i.e., the maximum coverage problem) than ranking. In contrast, our more general model

is not just concerned with subset selection, as the order in which products are presented can affect

which customers are hooked. Because of this, our results and techniques do not follow directly from

Radlinski et al. (2008) and the broader submodular optimization literature. Moreover, while the

greedy algorithm for the maximum coverage problem provides a natural intuition on how to rank

the selected products, in the online learning setting, this could take too many customers to learn.

To address this concern, we draw inspiration from Badanidiyuru and Vondrák (2014) and develop

a threshold-based algorithm well-suited for the ranking problem and show that it performs well

both theoretically and in practice; such threshold-based algorithms are not explored in Radlinski

et al. (2008).

2. Model

We consider an online retailer who offers a set of n products for sale during a selling season. For

convenience, the products are labeled as [n] = {1,2, . . . , n}. A set T of customers (|T |= T ) arrive
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sequentially and the retailer selects a ranking of products to offer to each customer. Formally, a

ranking is a permutation π : [n]→ [n] that maps each product i to a position 1≤ π(i)≤ n. We use

π−1(j) ∈ [n] to denote the product that is ranked in the jth position under ranking π. Clearly, if

π−1(j) = i, then π(i) = j by definition. We will use πt to denote the ranking of products displayed

to customer t and leave off the subscript when the context is clear. The assortment of products is

assumed to be fixed beforehand as are their prices, which reflects the fact that product ranking

decisions are typically made after assortment and pricing decisions in practice. Furthermore, we

assume that inventory is plentiful such that no products sell out before the end of the season.

Customers browse products sequentially and click on products that they like in order to learn

more about the product (e.g., its size, material, availability, etc.), and retailers observe these clicks

to help inform their subsequent ranking decisions. The set of products that a customer clicks on

depends on both her intrinsic preferences and the ranking of products presented to her. Formally,

each customer t ∈ T is characterized by (pt,ft, kt)∼iid D, where we refer to pt = (p1t, p2t, ..., pnt)

as her vector of intrinsic click probabilities, representing the probability that the customer would

click on a product if she had not clicked on any other products prior to this. For all i ∈ [n],

fit : 2[n]→ [−pit,1− pit] is a bias function that maps the set of products that the customer clicked

on prior to product i to a bias on the click probability of i (i.e., additive shift on pit). We refer to

kt ∈ [n] as her first impression window, which represents the number of products that the customer

is guaranteed to browse, regardless of whether or not she likes any of the products she sees.

More concretely, customer t browses all products within her first impression window (positions 1

to kt) in order to learn about the assortment and general style of products offered. If the customer

does not like any of the products she sees within her first impression window, she stops browsing

and exits the site; otherwise, she continues browsing.4 Given ranking π and product i ∈ [n], we

use χit(π) to denote the random set of products that appear prior to i in the ranking π which

customer t clicks on. With probability pit+fit(χit(π)), customer t likes product i and - conditional

4 The customer may continue to browse all or only a subset of the remaining products.
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on seeing product i - she clicks on it to learn more about the product.5 The additive term fit(χit(π))

captures how the set of products that the customer has clicked on in the past, χit(π), affects her

propensity to click on product i. We assume that for all i, t, fit(∅) = 0. We impose no restrictions

on the bias function fit(χ), which allows us to model situations where a customer’s probability for

clicking on product i may decrease if she has already clicked on a similar product in the past, i.e.

fit(χit(π)) < 0, increase if she has already clicked on a complementary product (fit(χit(π)) > 0),

or remain unchanged (fit(χit(π)) = 0). Additional details on specific formulations that the bias

function could take in practice can be found in Section 2.1.

The retailer has no prior knowledge of (pt,ft, kt) or D, and only observes customer clicks. Note

that our model allows for customer heterogeneity as the intrinsic click probabilities, bias function,

and first impression window can be different across customers; in addition, these three parameters

may be jointly correlated with each other. For each product i and customer t, we define the

Bernoulli random variable Cit(π) as Cit(π) = 1 if customer t clicks on product i under ranking

π and Cit(π) = 0 if not. We use also Cit(π) as shorthand to denote 1− Cit(π) ∀i, t. We will be

primarily concerned with the customer’s clicks within her first impression window, and therefore,

we define Cit(π) = 0 when π(i) > kt for notational convenience. We implicitly assume that the

random variable Cit(π) is conditional on customer t’s type, (pt,ft, kt), and will use this shorter

notation throughout the paper.

We further define the event that customer t is “hooked” as

Ht(π) =


1, if

∑
i∈[n]Cit(π)≥ 1

0, if
∑

i∈[n]Cit(π) = 0

;

in other words, customer t is hooked if she clicks on at least one product in the assortment under

ranking π. Note that Pr(Cit(π) = 1) = pit + fit(χit(π)) when π(i) ≤ kt, since customer t is guar-

anteed to have browsed product i if it is displayed within her first impression window. Since

5 We equate the customer “liking” a product to the customer “clicking on” a product if she sees it, although our

results remain unchanged if we instead assume that a customer clicks on a product she likes with probability λ∈ [0,1].
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Cit(π) = 0 when π(i)> kt, a necessary condition for the customer to be hooked is that she clicks

on at least one product within her first impression window. Therefore, Ht(π) = 1 if and only if∑
j∈[kt]

Cπ−1(j)t(π)≥ 1.

The problem faced by the retailer is to design a non-anticipatory algorithm that selects a ranking

πt for each arriving customer t ∈ T in order to maximize the total number of hooked customers

over the season, or equivalently, to maximize the total number of customers who engage with the

site by clicking on at least one product:

max
π1,π2,...,πT

E
[∑
t∈T

Ht(πt)
]
. (1)

To summarize the sequence of events, customers arrive sequentially and for each customer t∈ T ,

1. The retailer selects and offers ranking πt.

2. The customer browses all products within her first impression window (positions 1 to kt) and

clicks on products that she likes.

3. If the customer does not like any of the products within her first impression window, she

leaves the site without browsing any additional products. Otherwise, she is hooked and continues

browsing, and potentially clicking on, products beyond her first impression window.

4. The retailer observes all customer clicks (but not (pt,ft, kt)) and can use this information

when choosing rankings to offer new customers.

We will refer to the retailer’s ranking problem under the consumer behavior model described

above as the online assortment ranking problem (OnAR). We focus on a common special class of

algorithms for OnAR known as learning-then-earning algorithms - these methods focus on rapidly

converging to a (near-)optimal ranking that is then fixed for the remaining customers. Such algo-

rithms are often preferable in online retail when these sites lack accurate foreknowledge of the

number of customers |T | who visit during the selling period. Before presenting our class of dynamic

ranking algorithms for the online assortment ranking problem in Section 4, we first study the offline

assortment ranking problem (OffAR) in Section 3 where we make the (unrealistic) assumption that

the retailer knows the distribution D at the start of the season. Since D is known ahead of time,
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no learning is necessary and a single, static ranking can be chosen at the beginning of the season

and offered to all customers.

2.1. Model Discussion

Click Dependence on Ranking: We emphasize that although each of the three parameters

that define a customer’s type (pt,ft, kt) are independent of the ranking πt offered, the customer’s

resultant clicks do in fact depend on the ranking presented to her. First, the ranking determines the

set of kt products that the customer is guaranteed to browse within her first impression window,

which impacts whether she continues to browse (and potentially click on) additional products

beyond the first kt. Second, the customer’s click probability for browsed product i (pit+fit(χit(πt)))

is a function of all products that were offered earlier in the ranking which she clicked on, χit(πt).

Importantly, we note that our model permits arbitrary bias functions and as will be seen in

Section 4, does not require the estimation of the bias function for our learning algorithms. That

said, we share two natural bias functions as motivating examples for our model. First, fit(χit(πt))

may be expressed as the sum of pairwise terms, each representing the relationship between i and

some product in χit(πt); more concretely, fit(χit(πt)) =
∑

i′∈χit(πt)
aii′ where aii′ is analogous to the

cross-product demand elasticity (e.g., see Li et al. (2015b)) between products i and i′, and could

be positive or negative6. Second, Ahmed et al. (2012) and Srikant et al. (2010) model notions such

as fatigue in recommendations and web search, respectively, by assuming that the bias function

depends only on the number of prior clicks, e.g., fit(χit(πt)) = g(|χit(πt)|) for some function g(·).

Finally, we note that our model implicitly assumes that the bias function depends only on the

products that received clicks, as opposed to dependence on products the customer did not click

on. Although in practice it is plausible for the bias function to depend on all products in earlier

ranks, we believe the first-order drivers of the bias function are more likely to be products she clicks

on; due to this as well as tractability reasons, we included only the dependence on clicks in our

model. The rationale behind this modeling choice is that a non-zero bias stems from the customer

6 Note that our model allows for aii′ to depend on the customer t, which we have omitted here for simplicity.
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gathering information about a product from its ‘specification page’ following a click; this action

may affect her inclination towards similar or complementary products. Additionally, a customer’s

intention to avoid clicking on correlated products is already embedded in the distribution D. For

example, if a customer is less likely to click on a product i in the first position, then her propensity

for clicking on a similar product i′ at a later position would also be low according to pt. Finally,

we note that even in the absence of any bias function, whether or not a customer clicks on any

products affects her click probabilities of products ranked outside of her first impression window;

specifically, if the customer does not click on any products within her first impression window, her

click probabilities for the remaining products become zero.

Objective Function: In this paper - as is the case with the product ranking work by De Los San-

tos and Koulayev (2017) - our focus is on maximizing the number of customers who engage with

the site, specifically the number of customers who click on at least one product. Implicit in this

approach is the notion that ‘hooked’ customers then proceed to browse more products (beyond

rank kt), which in turn leads to a greater level of customer engagement and ultimately more future

visits and transactions. In the offline setting, our objective is analogous to the goal of maximiz-

ing store traffic, a key customer engagement metric for many retailers. Our objective can also be

interpreted as “minimizing abandonment”, a common goal in service systems, where in our case,

abandonment refers to a customer not finding any products she likes within her first impression

window and thus leaving the site early before being “served” a product she likes.

Although the objective of profit maximization is more commonly studied in the academic litera-

ture, there are a variety of reasons why our objective is suitable for many online retailers, including

our partner Wayfair. First, many retailers in highly competitive online markets have the primary

objective to maximize market share7 and can use such a customer engagement metric to do so.

Second, online retailers frequently run special events (e.g., thematic assortments, flash sales, etc. -

see Section 5 for a case study) containing discounted products aimed at boosting customer engage-

ment and retention rather than short-term profit; again, our objective and algorithms can be used

7 This is true even in the case of large players such as Amazon (Hoffman and Yeh 2018, Bezos 1998).
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for product ranking within these events. Finally, we note that click-based measures are widely

employed as proxies for customer engagement (see Bucklin and Sismeiro (2009) for a survey) and

can be particularly useful in settings involving real-time decision making such as ours, as opposed

to sparser, time-delayed data sources such as transactional data. Among click-based metrics, we

aim to select rankings that influence users to make at least one click. Arguably, additional clicks

have diminishing returns for metrics of interest such as transactions and return visits (see, e.g.,

Moe and Fader (2004) and Montgomery et al. (2004)), so we chose to emphasize first clicks in our

objective.

We conclude our discussion by remarking that our algorithms can be applied to derive similar

results for other objectives that have been studied in the literature; we devote Appendix B to

extending our work to the commonly studied revenue (or profit) maximization objective, and an

extension to the objective of maximizing total clicks follows similarly.

3. Offline Assortment Ranking

In this section, we consider the offline version of the assortment ranking problem (OffAR), where

the retailer knows the distribution D from which customers’ preferences and first impression win-

dows are drawn at the beginning of the season. However, the retailer does not know the parameters

(pt,ft, kt) before the arrival of each customer t∈ T . Since D is known ahead of time, no learning is

necessary and a single, static ranking can be chosen at the beginning of the season and offered to all

customers. Although our primary interest lies in the online assortment ranking problem where the

retailer must learn the customers’ preferences, the methods developed in this section will provide a

clear understanding of the core techniques involved in the more sophisticated learning algorithms

that we will present in Section 4.

Proposition 1. The offline assortment ranking problem is NP-Hard.

The proof of this result utilizes an important special case of OffAR where pit ∈ {0,1}, fit(χ) = 0

for all χ⊆ 2[n], and kt = k ∀t∈ T , i∈ [n]. This special case admits the following intuitive interpreta-

tion: each customer t∈ T is endowed with a set of preferred products St ⊆ [n] and first impression
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window 1≤ k≤ n and clicks on any product i∈ St that is present within ranks [1, k]. The retailer’s

goal is to select a ranking π to maximize the expected number of customers who have at least

one product from their preferred subset inside their first impression window. This special case of

OffAR is a stochastic version of the maximum coverage problem. The maximum coverage problem

is known to be NP-Hard (Hochbaum 1997, Chapter 3), and given that OffAR is a generalization,

it must also be NP-Hard. Formal proofs of all analytical results are provided in Appendix A.

Given this result, it is difficult to find an optimal solution to OffAR for a reasonable problem size.

Thus, a standard optimization approach is to consider approximation algorithms that come close

to the optimal solution. The best approximation algorithm for the maximum coverage problem - a

special case of OffAR - is a greedy algorithm that achieves a (1− 1
e
) approximation factor (Theorem

3.8 in Hochbaum (1997)). Motivated by this greedy algorithm, we formally present our algorithm

for the more general offline assortment ranking problem in Algorithm 1, which we will refer to as

the Greedy Algorithm for OffAR (or simply Greedy Algorithm when the context is clear).

Algorithm 1 sequentially fixes products in ranks {1,2, . . . , n}. Assuming that ranks 1 through

r−1 have been fixed, in iteration r, the algorithm considers all the remaining (unranked) products

for position r. The product i with the maximum marginal benefit (∆ir) - i.e., that increases

the probability of hooking an incoming customer by the largest amount - is fixed at rank r and

the algorithm continues on to the next rank. The marginal benefit can also be interpreted as

the probability that the customer clicks on the product at rank r but not on any products in

ranks {1,2, . . . , r − 1}. Note that ∆ir depends on three key factors: (1) the probability that a

customer clicks on product i, (2) the probability that a customer does not click on products in

ranks {1,2, . . . , r − 1}, and (3) whether or not rank r is within the customer’s first impression

window. The combination of the first two factors can be interpreted as the balance of popularity

and diversity. On the one hand, the retailer wants to offer popular products that are likely to

be clicked on; on the other hand, the retailer wants to select diverse products to hook a more

heterogeneous set of customers.
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Algorithm 1: Greedy Algorithm for OffAR

Initialize null ranking πg(i) = ∅ for all 1≤ i≤ n, and initialize unranked products U = [n];

for r= 1 to n do

for i∈U do

Let π̃g← πg;

π̃g(i)← r;

∆ir =Et∼D[Ht(π̃
g)−Ht(π

g)];

end

Let i∗r = arg maxi∈U ∆ir;

Set πg(i∗r)← r;

U ←U \ i∗r.

end

Algorithm 1 reduces to the standard greedy algorithm for the maximum coverage problem for

the special case of OffAR where pit ∈ {0,1}, fit(χ) = 0 for all i, t and kt = k ∀t ∈ T , i ∈ [n], which

is known to provide a (1− 1
e
)-approximation factor to the optimal offline solution. The important

yet subtle generalization in our algorithm can be seen in the definition of ∆ir, which incorporates

varying first impression windows and probabilistic interests that may depend on past products

clicked on via the bias function. The following result shows that for our more general offline

assortment ranking problem, the Greedy Algorithm still achieves a 1
2
-approximation factor.

Theorem 1. The Greedy Algorithm for OffAR results in ranking πg such that the probability that

an incoming customer is hooked is at least one-half that of the optimal ranking π∗, i.e. Algorithm

1 achieves a 1
2
-approximation factor for OffAR.

The proof involves establishing a relationship between the fraction of customers hooked due to

each rank in π∗ with the corresponding rank in πg; this allows us to prove a bound on Ht(π
∗)

in terms of Ht(π
g) since the objective function can be written as the sum over all ranks of the
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fraction of customers hooked. To establish the relationship, we find it beneficial to introduce a

hypothetical “composite” ranking for any fixed customer t, π̃gt , whose first kt products coincide with

the top products in πg and second kt products with those in π∗. We further consider a hypothetical

customer t̃ who has the same click probabilities and bias functions as customer t but with first

impression window 2kt. We then show that the probability that customer t gets hooked by ranking

π∗ is smaller than the probability that our hypothetical customer t̃ gets hooked by π̃gt ; thus we

can focus on comparing any fixed customer t’s hook probability under πg with customer t̃’s hook

probability under π̃gt .

First, we note that the probability that customer t̃ is hooked by any of the first kt products in

π̃gt is identical to the probability that customer t is hooked by πg, which is by definition Ht(π
g). To

complete the approximation factor of two (or one-half), we show that the probability that customer

t̃ is hooked by any of the second kt products in π̃gt is smaller than the probability that customer t

is hooked by πg (Ht(π
g)). To do this, we argue rank-by-rank that the probability that customer t̃

is hooked by product i at rank kt + r in π̃gt is less than or equal to the probability that customer

t is hooked by the rth ranked product in πg. The intuition behind this claim is that when product

i is ranked after the top r − 1 products in πg, it cannot hook more customers than the product

fixed by our algorithm at rank r since our greedy algorithm sequentially adds products with the

maximum hook probability.8 Formally proving this argument requires some additional machinery

to account for the correlations among clicks in π∗ and πg due to the bias functions, which we

present in Lemma 1 in the Appendix.

The following example shows the 1
2
-approximation factor in Theorem 1 is tight for Algorithm 1.

Example 1. Consider an instance of OffAR with two products {1,2} and fit(χ) = 0 for all i, t

and sets χ⊆ [n] The distribution D is defined as follows:

• with probability 0.5 + ε, customer t has kt = 2 and p1t = 1, p2t = 0;

• with probability 0.5− ε, customer t has kt = 1 and p1t = 0, p2t = 1.

8 The claim is trivially true when product i is also ranked within the top r− 1 products in πg.
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The optimal ranking is π∗ = {2,1}, which hooks all customers with probability one. On the other

hand, πg = {1,2}, which only hooks an incoming customer with probability 0.5 + ε. As ε→ 0, the

approximation factor for the Greedy Algorithm for OffAR approaches one-half. �

Interestingly, although the 1
2
-approximation factor is tight for general OffAR instances, the

following result shows that the Greedy Algorithm for OffAR can achieve a (1− 1
e
)-approximation

factor for a broad class of special cases to OffAR, including the maximum coverage problem.

Theorem 2. Consider the special case of OffAR where pt, ft, and kt are all pairwise inde-

pendent, referred to as OffAR with Independence. The Greedy Algorithm for OffAR achieves a

(1− 1
e
)-approximation factor for OffAR with Independence.

The proof involves showing that for any given first impression window k, the first k ranks in

πg are identical when (i) all customers are included when running the algorithm, and (ii) only

customers with first impression window k are included when running the algorithm. This simple

yet powerful result follows from the fact that the click probabilities and first impression windows

are independent of each other. Consequently, the probability that an incoming customer first clicks

on a product i when it is placed at some position j ≤ k remains the same when conditioned on

each possible value of the first impression window kt ≥ j. Therefore, both versions of the greedy

algorithm mentioned above would select the same product at rank j since assuming a specific

value for the first impression window does not alter the probability that a customer is hooked.

Using results from stochastic submodular optimization, we can then show that the latter ranking

is a (1− 1
e
)−approximation to the optimal ranking for customers with first impression window k.

Finally, we relate the hook probability of the optimal ranking for all customers to the optimal

ranking for customers with first impression window k for all k ∈ [n] via a decomposition argument.

For the special case of OffAR where pit ∈ {0,1}, fit(χ) = 0 for all i, t, and allowing for dependent

pt and kt, one can develop an alternative algorithm using LP-pipage rounding that also achieves a

(1− 1
e
)−approximation factor (Asadpour et al. 2020). Intuitively, if pt and kt are correlated, there

may be more opportunity to prioritize hooking different customer types due to varying kt. Our

algorithm does not account for such dependencies, whereas work by Asadpour et al. (2020) does.

Unfortunately, their algorithm does not extend to the learning setting in OnAR.
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4. Online Assortment Ranking

In this section, we study the more realistic online assortment ranking problem (OnAR), where the

retailer does not know the distribution D from which customers’ preferences and first impression

windows are drawn. A naive approach for tackling this problem is to learn the complete distri-

bution D by sampling from a sufficiently large number of customers. One could then apply (say)

Algorithm 1 for OffAR to retrieve the same approximation factors as in Section 3. Unfortunately,

such an approach is likely infeasible as the joint distribution D may have a large support, whereas

the number of customers (available samples) may be relatively small. The problem is further com-

pounded by the fact that the retailer’s observations are censored : the retailer cannot observe the

exact first impression window kt of customers nor infer the the full vectors pt and ft.

Driven by these constraints, we develop learning-then-earning algorithms for OnAR that converge

to the offline approximately optimal ranking without learning the distribution D. Our learning-then-

earning algorithms operate in two phases: first, in the learning phase, the algorithm offers different

rankings to customers in order to learn the (approximately) best ranking. Then, in the earning

phase, the algorithm offers this single, (approximately) best ranking to the remaining customers.

Although our proposed methods do sample customers to partially infer their preferences, the goal

is to simply learn the (approximately) best ranking of products, not the entire distribution D. As

is typical for online learning algorithms, we measure performance in terms of two metrics: (i) an

approximation factor with respect to the optimal ranking for the earning phase, and (ii) the length

of the learning phase, i.e. the number of customers for which the algorithm learns before converging

upon the final ranking. The first metric essentially measures how accurately the algorithm can

learn, whereas the second metric measures the speed of learning.

We present two learning algorithms for OnAR: the Simple Learning Algorithm and the Threshold

Acceptance Algorithm. The former leverages multi-armed bandit (MAB) techniques to mimic the

Greedy Algorithm for OffAR. These techniques come at the cost of a long learning phase, leading

to the question of whether the retailer could sacrifice some performance in favor of speed. With
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this motivation, we develop the Threshold Acceptance Algorithm and prove that it achieves an

approximation guarantee that is close to that of the Greedy Algorithm for OffAR but with a

convergence rate that is an order of magnitude faster than that of the Simple Learning Algorithm.

4.1. Simple Learning Algorithm

We begin with a sequential learning paradigm that yields a class of algorithms for OnAR all of

which converge to a one-half approximation to the optimal ranking, yet differ by the length of the

learning phase. The class of algorithms that we propose builds upon previous work in the area

of multi-armed bandits for the problem of identifying the best arm among a finite set, i.e., the

action yielding the highest expected reward. We propose a general procedure that transforms such

MAB algorithms into algorithms that compute rankings for OnAR. We use a MAB algorithm as a

black-box input and make several calls to this black-box to fix an approximately optimal product

at each rank. Our reliance on black-box transformations using MAB algorithms is inspired by the

large body of recent research that focuses on computing the best arm using the minimum number

of samples (see Jamieson and Nowak (2014) for a survey); this version of the MAB problem is often

referred to as MAB for Best Arm Identification, although we will simply use MAB for brevity.

We first describe a few technical concepts required for stating our results. A multi-armed bandit

problem comprises of n arms or actions such that upon ‘pulling each arm’ i, the algorithm observes

a reward of νi that is drawn independently from some unknown distribution. There is a finite limit,

T̃ , on the total pulls that can be made. We focus on the objective of identifying the arm that

maximizes the expected reward (i∗ = arg maxiE[νi]) while minimizing the number of arm pulls. As

is common in online learning, we use the framework of (ε, δ)-PAC (probably approximately correct)

algorithms that compute an approximately-optimal arm with high probability.

Definition 1. (Even-Dar et al. 2006) An algorithm is an (ε, δ)-PAC algorithm for the multi-

armed bandit problem with sample complexity T̃ if with probability at least 1 - δ, it outputs an

arm i such that E[νi]≥maxi′ E[νi′ ]− ε and the number of times it pulls the arms is bounded by T̃ .

Algorithm 2 presents our Simple Learning Algorithm for OnAR, which specifies rankings offered

to customers during the learning phase. The input to Algorithm 2 includes an (ε′, δ′)-PAC algo-

rithm, ALG, as a black-box. For any given choice of the parameters ε′, δ′, such an algorithm takes
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a collection of products (arms), draws a finite number of samples from the specified reward dis-

tribution associated with each arm, and returns with probability at least 1− δ′, a product that

maximizes the expected reward up to an additive error of ε′. We discuss two potential choices for

the black-box algorithm ALG after Corollary 1.

The Simple Learning Algorithm proceeds sequentially from ranks one through n and for each

rank r, it invokes ALG as a black-box algorithm to identify the product with the maximum marginal

benefit to fix at rank r. Formally, the inputs to ALG at rank r comprise of the products that have

not been fixed at previous ranks, with the reward of each arm i equal to its marginal benefit at

the current rank defined as a Bernoulli random variable equal to one if the customer clicked on

product i in rank r but not on any product in ranks [1, r− 1], and zero otherwise. In turn, ALG

learns the marginal benefit of each product by observing the click actions of at most T̃ customers;

each customer is equivalent to a single sample (arm pull) in Definition 1. The product returned

by ALG (with probability at least 1− δ′) hooks the same fraction of customers as the maximum

marginal benefit product minus an additive error of ε′, and as such, is irrevocably assigned to rank

r. This process is then continued for subsequent ranks until the end of the learning phase, at which

time the ranking output by Algorithm 2 is offered to all remaining customers. We note that the

Simple Learning Algorithm mimics the Greedy Algorithm for OffAR since the product with the

approximately-maximum marginal probability of hooking a customer is fixed at each rank with

high probability.

The following result shows that the ranking produced by the Simple Learning Algorithm hooks

at least (approximately) one-half of the customers hooked by the optimal ranking with high prob-

ability for general OnAR. Analogous to the offline setting, we define OnAR with Independence

to be the special case of OnAR where pt, ft, and kt are pairwise independent; in this case, the

one-half approximation factor can be further tightened to 1− 1
e
.

Theorem 3. Given any (ε′, δ′)-PAC algorithm as a black box where ε′ = 2ε
n

and δ′ = δ
n

, the

Simple Learning Algorithm returns a ranking π̃ such that with probability (1− δ):
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Algorithm 2: Simple (Black-Box) Learning Algorithm

Input: (ε′, δ′)-PAC algorithm ALG, Parameters ε, δ > 0;

Initialize null ranking π̃(i) = ∅ for all 1≤ i≤ n, and initialize unranked products U = [n];

for r= 1 to n do

For all i∈U , define π̃ ∪ i to be a ranking identical to π̃ in positions 1, ..., r− 1 and with

product i in rank r;

Run ALG on products U for T̃ customers, where νi =Ht(π̃ ∪ i)−Ht(π̃) for all i∈U ;

Let ĩr be the product output by ALG;

Set π̃(̃ir)← r;

U ←U \ ĩr.

end

1. E[Ht(π̃)]≥ 1
2
E[Ht(π

∗)]− ε for general OnAR.

2. E[Ht(π̃)]≥ (1− 1
e
)E[Ht(π

∗)]− ε for OnAR with Independence.

Our final ranking π̃ is essentially an (ε, δ)-PAC approximation to the optimal ranking π∗. Since

π̃ achieves an additive error of ε compared to the benchmark, the maximum permissible error for

ALG at each individual rank r is ε
n

(multiplied by a factor of two); similarly, for each rank r, the

product designated at that rank via ALG is suboptimal with probability at most δ
n

. Given the

lower bounds and the hardness results for OffAR in Section 3, it is not possible for any online

learning algorithm to identify the optimal ranking using a polynomial number of samples.

The Simple Learning Algorithm makes exactly n black-box calls to the (ε′, δ′)-PAC algorithm.

This allows us to bound the length of the learning phase as follows.

Corollary 1. Given any (ε′, δ′)-PAC algorithm as per Definition 1 as a black box, the Simple

Learning Algorithm returns a ranking π̃ after at most nT̃ customers.

Since an (ε, δ)-PAC algorithm is utilized as a black-box, an implementation of the Simple Learn-

ing Algorithm could invoke any of numerous learning algorithms (Even-Dar et al. 2006, Jamieson
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and Nowak 2014, Kalyanakrishnan et al. 2012) for best-arm identification to develop a correspond-

ing methodology for ranking. Note that all of these algorithms converge to a ranking with the same

approximation guarantee. However, the total number of customers they require may depend on

different parameters and thus the choice of the best algorithm is instance-specific. The following

corollary highlights the number of customers used by our algorithm for two specific instantiations

of the black-box (ε′, δ′)-PAC algorithm. In particular, we consider the Exhaustive Sampling Algo-

rithm (Even-Dar et al. 2006), where each product is sampled L= 4
ε2

log( 2n
δ

) times and the product

yielding the largest number of hooked customers is returned; note that T̃ ≤ nL in this case. We

also consider the LUCB Algorithm (Kalyanakrishnan et al. 2012), a variant of the popular upper

confidence bound (UCB) algorithm.

Corollary 2. The Simple Learning Algorithm returns a ranking π̃ with approximation factors

as specified in Theorem 3 with probability (1− δ) and length of learning phase as described below:

1. Θ
(
n4

ε2
log(n

2

δ
)
)

when the Exhaustive Sampling Algorithm is used as the black box.

2. Θ
(
n2

∆2
∗

log( n2

∆2
∗δ

)
)

when the LUCB Algorithm is used as the black box, where ∆∗ is a measure9

of the minimum gap between the rewards of the best and second-best arms, where the minima is

taken over all ranks r ∈ [n].

It is worth noting that the Ranked Explore and Commit Algorithm in Radlinski et al. (2008)

is identical to our Simple Learning Algorithm with Exhaustive Sampling for the special case of

fit(χ) = 0 and kt = k for all i, t. Both papers show that the algorithm (approximately) achieves

the (1− 1
e
)-approximation factor to the optimal offline solution; note that our result follows from

Theorem 3.2, since fit(χ) = 0 and kt = k for all i, t is a special case of OnAR with Independence.

However, due to our generalizations - namely, (i) our Simple Learning Algorithm can use any black-

box (ε′, δ′)-PAC algorithm, not just the Exhaustive Sampling Algorithm, (ii) our bias function

9 Technically, let [π̃]r denote the sub-ranking of π̃ with only the first r ranks filled and [π̃]r−1 ∪ i be the ranking that

coincides with π̃ in its first r−1 positions and has product i in its rth rank. For any r let Ur be the set of products that

are not ranked in the first r− 1 positions in π̃. We define ∆∗ = minnr=1 mini,i′∈Ur (Ht([π̃]r−1 ∪ i)−Ht([π̃]r−1 ∪ i′)).
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allows for click probabilities to depend on the products previously clicked on, and (iii) our first

impression windows vary across customers - the techniques required to prove our more general

results are different. For example, the arguments in Radlinski et al. (2008) do not apply to our

model as the total value of a solution cannot be decomposed into marginal probabilities if we

rearrange the order in which products are presented. Instead, our proof relies on a position-by-

position comparison of the marginal probability that a product hooks a customer in the optimum

and greedy rankings. This in turn requires carefully handling the correlation between the products

that customers click on in different rankings, which we formalize in Lemma 1 in the Appendix.

To summarize, the Simple Learning Algorithm balances popularity and diversity and (approxi-

mately) recovers the performance guarantees achieved in the offline setting for the earning phase.

The algorithm requires as many as Θ(n4) customers in the learning phase before converging to an

approximately-optimal ranking for the earning phase. Requiring such a long learning phase may

be infeasible; thus, the next subsection is devoted to modifying the Simple Learning Algorithm to

decrease the length of the learning phase at a slight loss of optimality in the earning phase.

4.2. Threshold Acceptance Algorithm

We propose a novel method that we term the Threshold Acceptance Algorithm, which achieves

a significant speed-up in convergence time at the cost of only a small loss in performance. The

approach is fully described in Algorithm 3 but its core idea is rather simple: instead of exhaustively

trying all products at a given rank in order to identify the best one, the algorithm simply selects a

product that is ‘good enough’. Although this appears to be a simple tweak, the convergence time is

an order of magnitude faster.

At each stage of the algorithm, we maintain a threshold τ , which is monotonically decreasing.

The algorithm terminates when the threshold goes below a pre-specified value τmin. Any product

whose marginal benefit exceeds the threshold is fixed at the current rank and we move on to the

next rank. Unlike the Simple Learning Algorithm, the Threshold Acceptance Algorithm allows us

to fix products at consecutive ranks in a single pass through the products: this is the primary
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Algorithm 3: Threshold Acceptance Algorithm

Input: Parameters ε, δ,α > 0, Initial and Final Thresholds: τmax ≥ τmin > 0;

Initialize null ranking π̃(i) = ∅ for all 1≤ i≤ n, and initialize τ = τmax;

Initialize unranked products U = [n], CurrentRank= 1;

while τ ≥ τmin and CurrentRank≤ n do

for i∈U do

Define π̃ ∪ i to be a ranking identical to π̃ in positions 1, ..., r− 1 and with product i in

r, where r=CurrentRank;

Display ranking π̃ ∪ i to L= n2

ε2
log( n√

δ
) customers;

Let ∆ir be the fraction of the above customers who only click on i;

if ∆ir ≥ τ then

Set π̃(i)←CurrentRank;

U ←U \ i, CurrentRank←CurrentRank+ 1;

end

end

τ ← τ
1+α

;

end

cause of the speed-up. Once the algorithm takes a full pass through the available products, the

threshold is then lowered geometrically (i.e., from τ to τ
1+α

) and thus the algorithm terminates after

a logarithmic number of rounds. The choice of α allows the algorithm designer to trade off between

performance and speed: small (large) α leads to more (less) conservative thresholds which result

in a longer (shorter) learning phase yet better (worse) performance in the earning phase. Finally,

in some cases, the ranking π̃ output by the Threshold Acceptance Algorithm may contain fewer

than n products assigned to ranks. In this case, one can simply append the remaining products to

π̃ (e.g., according to estimated click probabilities) without affecting the theoretical bounds.
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Theorem 4. The Threshold Acceptance Algorithm with τmax = 1, τmin = ε
n

returns a ranking π̃

such that with probability 1− δ

E[Ht(π̃)]≥ 1

2 +α
E[Ht(π

∗)]− ε,

where π∗ is the optimal solution to OffAR. The length of the learning phase is

O
(
n3

ε2
log1+α(n

ε
) log( n√

δ
)
)

.

The key idea behind the proof is two-fold: first, the product fixed by our algorithm at position

r in the ranking π̃ has an empirical marginal benefit of at least τ . Due to our choice of L, its

actual expected marginal benefit can be lower bounded by τ − ε
n

. Second, we bound the loss due

to only selecting a product that is ‘good enough’ by recognizing that no product can provide more

marginal benefit than (1 + α)τ , due to how the threshold is decreased at each iteration of the

algorithm. The rest of the proof involves summing up the above ideas over all ranks and deriving

a relationship between the marginal benefit of adding a product at rank r in π̃ vs. π∗.

Note that the length of the learning phase (Θ(n4)) for the Simple Learning Algorithm with

Exhaustive Sampling is a strict and instance-agnostic limit, whereas the Threshold Acceptance

Algorithm’s learning phase length of O(n3 log(n)) is only a worst-case bound: in practice, the actual

click probabilities tend to be closely clustered in which case the learning phase is significantly

shorter. Furthermore, we note that in both algorithms, the performance improves substantially

throughout the learning phase, since products are fixed in ranks iteratively and the initial ranks are

responsible for hooking the most customers due to both (i) expiring first impression windows, and

(ii) customers’ increased likelihood of being hooked by an earlier-ranked product.

Additional Considerations There are a few practical considerations worth noting regarding

both our algorithms and model. First, although our algorithms specify which products to rank

only in positions [1, r] for iteration r, in practice the retailer can simply append the remaining

products (e.g., according to estimated click probabilities) without affecting the theoretical bounds.

Second, the ranking returned by our algorithms would not be affected even if the retailer only
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observes the first product that a customer clicks on. This has key implications: for one, it implies

that companies only need to track a customer’s first click, rather than the entire set of products

the customer clicks on. In addition, it highlights that our algorithms are robust to situations where

customers change their search paths and click behavior after clicking on the first product.

4.3. Regret Analysis

The performance of our learning algorithms was stated in terms of two metrics commonly used to

evaluate learning-then-earning algorithms, namely the approximation to the optimal ranking and

the speed of convergence. Breaking down the performance in such a manner highlights the tradeoffs

inherently involved, e.g., the Threshold Acceptance Algorithm requires much fewer customers than

the Simple Learning Algorithm to converge, but its approximation factor is slightly worse. That

said, all of our results in this section could be stated in terms of the underlying regret bound by

assuming that the retailer incurs unit regret during the learning phase and fixed per-round regret

in the earning phase.

Formally, the regret incurred by a learning policy that selects ranking πt for customer t bench-

marked against a static ranking πs can be written as E[Rπs ] =
∑T

t=1 (E[Ht(π
s)]−E[Ht(πt)]). First,

consider the Simple Learning Algorithm with Exhaustive Sampling as described in Corollary 2.

Assuming that the total number of customers exceeds the length of the learning phase, i.e.,

T > n4

ε2
log( 2n2

δ
), its regret compared to an arbitrary static ranking πs can be expressed as:

E[RSIMPLE
πs ]≤

(
n4

ε2
log(

2n2

δ
) + εT + δT

)
+T (E[Ht(π

s)]−E[Ht(π
g)]) ,

where πg is the ranking returned by the Greedy Algorithm for OffAR from Section 3. Substituting

ε3 = n4

T
and δ= 1

T
, we get the following corollary.

Corollary 3. The Simple Learning Algorithm (Algorithm 2) with Exhaustive Sampling

achieves a regret of at most O
(
n

4
3T

2
3 log(nT )

)
+E[Ht(π

∗)] · 1
2
T compared to the optimal ranking π∗

and O
(
n

4
3T

2
3 log(nT )

)
compared to the ranking πg returned by the Greedy Algorithm for OffAR.
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The regret incurred by the Threshold Acceptance Algorithm, RTHRESH
πs , can be bound similarly.

Let πT denote the static ranking returned by the offline version of the Threshold Acceptance

Algorithm.10 From Theorem 4, it is not hard to deduce that πT would be a 1
2+α

-approximation to

the optimal ranking. Then, we have that:

E
[
RTHRESH
πs

]
≤
(
n3

ε2
(
1 + log1+α(

n

ε
)
)

log(
n√
δ

) + εT + δT

)
+T

(
E[Ht(π

s)]−E[Ht(π
T )]
)

Substituting ε3 = n3

T
(1 + log1+α(T )) and δ= 1

T
, we get:

Corollary 4. The Threshold Acceptance Algorithm (Algorithm 3) achieves a regret of at

most O
(
nT

2
3 (log1+α(T ))

1
3 log(nT )

)
+ E[Ht(π

∗)] 1+α
2+α

T compared to the optimal ranking π∗ and

O
(
nT

2
3 (log1+α(T ))

1
3 log(nT )

)
compared to the ranking πT returned by the offline Threshold Accep-

tance Algorithm.

We retain the dependence of the regret on α in Corollary 4 to emphasize that the value of this

parameter is context-specific and not something that can be tuned for optimality.

Compared to the optimal ranking π∗, our regret comprises of a sublinear parameter whose

derivative approaches zero as T →∞ as well as a term that scales linearly in T . Given that the offline

version of this problem (OffAR) is NP-Hard, this linear term is unavoidable since any approximation

algorithm would lead to a constant per-round regret even if the underlying distribution D was

known in advance.

5. Simulations

In this section, we describe our empirical setting and estimate the impact of our Simple Learning

Algorithm and Threshold Acceptance Algorithm on actual clickstream data.

5.1. Company and Data Description

We partnered with Wayfair to develop our algorithms and estimate their impact using clickstream

data. Although a majority of Wayfair’s business is driven via intentional search through product

10 As in Section 3, the offline version of this algorithm can be constructed by directly computing the value of ranking

π̃ ∪ i in Algorithm 3 instead of evaluating its sample average by displaying this ranking to L customers.
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Figure 1 Chosen from a single Wayfair event, (a) shows six diverse products with respect to style, price point,

product category, color, etc. and (b) shows six more similar products across these dimensions.

category pages (e.g. a customer searching for a new bed), a significant amount of sales and traffic

is through Wayfair’s “events”. These events are often stylistically themed and offer products from

multiple product categories; typical events last about 2 weeks and offer approximately 100 products.

Figure 1 shows products chosen from a single Wayfair event; panel (a) highlights the diversity of

products offered with respect to style, price point, product category, color, etc., whereas panel

(b) shows six products that are more similar. A customer with a first impression window of six

products would likely have a very different perception of the full assortment of products offered in

the event if she were to be shown the products in (a) vs. (b) in the first six ranks.11

Wayfair provides three options for customers to sort items in events: recommended (default),

customer rating, and price. For some events, Wayfair may offer a refinement bar to allow customers

to filter the products to only those they may be interested in. Less than 5% of customers change

the default ranking or use filters, supporting our consumer behavior model that most customers

are likely engaging in hedonic browsing as opposed to intentional search. We chose to not include

customers who change the ranking or use filtering in our simulations since our algorithms are

11 Products are ranked left to right, then top to bottom, such that the first row in the figure displays ranks 1, 2, and

3, and the second row displays ranks 4, 5, and 6.
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Event A B C D E F

Number of product categories offered 29 12 25 15 18 5

Table 2 Number of Product Categories Offered in Each Event

intended to replace Wayfair’s default ranking and therefore would only be applied to browsing

customers. Wayfair’s default ranking is a static ranking (does not change throughout the event)

which ranks products in decreasing order of their expected popularity based on pre-event data.

Wayfair selected six historical, stylistically-themed events (e.g., Halloween-themed decor) for

which to evaluate our algorithms. The total number of customers (|T |) who shopped at each event

ranged between 100,000 and 325,000; due to confidentiality, we disguise events as A, B, C, D, E, and

F in increasing order of |T |. Table 2 displays the number of product categories that were offered in

each event; each product category represents a set of products that Wayfair’s merchandising team

considers to be substitutable, at least from a functional perspective (e.g., floor lamps and ceiling

lights could constitute two separate product categories in one of the events). The large number of

product categories offered in most events illustrates the functional diversity12 of the offered product

set. For each of these events, we were provided clickstream data which includes every product each

customer clicked on in the event. We represent this data as cit = 1 if customer t clicked on product

i and 0 otherwise. We focus only on the first n= 48 products in the event since this is the number

of products shown per page before having to click to view the second page of products. As per the

data, very few customers advance to the second page.

5.2. Implementation

First, we describe how we generate customers endowed with (pt,ft, kt) using the clickstream data

provided. Then, we describe the implementation details of the algorithms.

5.2.1. Customer Generation

Since (pt,ft, kt) is unobserved, we must infer it from the clickstream data. To do so, we make a few

simplifying assumptions and then adopt a general maximum likelihood methodology to estimate

12 We note that our definition of diversity extends beyond simply functional use, but nonetheless this is a reasonable

proxy for one dimension of product diversity within an event.
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the click probabilities and first impression windows subject to these assumptions. First, we assume

interest probabilities are independent of first impression windows (OnAR with Independence).

Second, we assume that if a customer is hooked, she views the remaining products on the page

(i.e., she views the first 48 products in the event). This assumption is very conservative in that it

handicaps our algorithms’ performance because for hooked customer t, this assumption results in

inferring pit = 0 for all products i that the customer did not click on; in reality, the customer may not

have clicked on a product i simply because she did not view it and pit could have been non-zero. This

assumption gives our algorithms less opportunities to hook customers, and thus the performance

of our algorithms is likely a lower bound on its potential real-world performance. Third, we assume

that pit ∈ {0,1} and fit(χ) = 0 ∀i, t where pit = 1 implies that customer t will click on product i

if she views it and fit(χ) = 0 implies that previous clicks do not affect a customer’s propensity

to click on later products. Finally, we make assumptions on the distribution that customers’ first

impression windows follow, and on the number of customers who are completely uninterested in

the assortment; we discuss these assumptions along with our methodology. In Appendix E, we

present additional simulations that were conducted with different assumptions.

Next we describe our inference methodology following general maximum likelihood principles.

First we fix the distribution of first impression windows Dk and the total number of customers

who have non-zero preferences, |T̃ | (i.e.,
∑

i pit ≥ 1 for t∈ T̃ ). Given Dk and |T̃ |, we will infer the

distribution of interest probabilities, Dp. Subsequently, we will discuss our choices of Dk and |T̃ |.

Let T̃c be the subset of customers from T̃ who clicked on a product, i.e. T̃c , {t ∈ T̃ :
∑

i cit ≥ 1}.

Note that T̃c ⊆ T̃ ⊆ T and pit = cit ∀t ∈ T̃c and i ∈ [n]; the challenge is that we do not observe pt

for t∈ T̃ \ T̃c, when ct = 0.

1. Derive distribution of first impression windows for customers t ∈ T̃c: We define r1
t to be the

index of the first product customer t clicks on and let i be the product located at rank r1
t . We have

cit = 1 and ci′t = 0 for any product i′ placed at a rank smaller than r1
t . Since the customer clicked on

the r1
t –th ranked product, her first impression window kt must be greater than or equal to r1

t . That
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is, for r < r1
t , Pr(kt = r|t∈ T̃c, r1

t ) = 0. Therefore, for r ≥ r1
t , P r(kt = r|t ∈ T̃c, r1

t ) = Pr(kt=r)∑n
l=r1t

Pr(kt=l)
,

where Pr(kt = l) comes from the distribution of first impression windows, Dk.

2. Weight each observed preference vector: For each customer t ∈ T̃c, assign weight

wt = 1∑n
l=r1t

Pr(kt=l|t∈T̃c)
to preference vector pt. Intuitively, this assigns larger weights to preference

vectors whose first clicks are in greater ranks, which accounts for the fact that those preference

vectors are less likely to be observed in the click data due to expiring first impression windows.

This gives rise to a distribution Dp with a set of preference vectors and a weight on each vector

that is proportional to the probability of a customer having the corresponding preferences.

3. Sample |T̃ | preference vectors from the empirical distribution of Dp, and compare the fraction

of sampled customers who are hooked by Wayfair’s ranking against the fraction in the actual data.

Now that we have outlined our approach of estimating Dp given Dk and |T̃ |, we discuss our

choices of Dk and |T̃ |. For Dk, we assumed 5% of customers viewed all n products on the page

(kt = n) and the remaining customers’ first impression windows followed a power law distribution

where Pr(k = r) = 0.95 ar−b∑n−1
l=1

al−b
∀r = 1, ..., n − 1. Power law distributions are well-motivated in

the context of consumer behavior and product popularity on the Internet (Clauset et al. 2009).

We set |T̃ |= 0.8|T | based on the parameter choices given to us by our partners at Wayfair. We

conducted sensitivity analysis on these parameter choices to better understand their impact on the

algorithms’ performance; our analysis gleans similar results so we relegate it to Appendix C.

We tuned parameters a and b of the power law distribution such that the resultant Dk and Dp

most closely matched the observed data: after generating |T̃ | customers per the procedure outlined

above, we randomly assigned each customer a first impression window according to Dk. We then

identified which customers would have been hooked had they been presented with Wayfair’s actual

ranking in order to generate hypothetical click vectors, and we compared the total number of actual

clicks vs. the total number of hypothetical clicks for each product. Figure 2 presents the actual

vs. hypothetical number of clicks, where the hypothetical clicks are averages over 100 simulations

in step 3. In 99.5% of our simulations, the percent of customers hooked by Wayfair’s ranking
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was within [0.98,1.02] times the actual percent of customers hooked. The close fit illustrates that

our customer generation procedure is congruent with the observed data and generates realistic

customers that we can use to test our algorithms. In Appendix D, we further examine the predictive

power of our customer behavior model as well as others proposed in the literature.

Figure 2 Actual and simulated relative click probabilities, normalized for confidentiality so that the maximum

click probability of any product is one. An out-of-sample model comparison can be found in Appendix D.1.

5.2.2. Algorithm Details: Given the consumer behavior model parameters inferred from the

data, our goal is to evaluate the performance of our Simple Learning Algorithm (Algorithm 2) with

Exhaustive Sampling as a Black-Box as well as our Threshold Acceptance Algorithm (Algorithm 3).

We evaluate their performance compared to two static rankings: Wayfair’s actual ranking used in

the event, and the ranking output by our Greedy Algorithm for OffAR (Algorithm 1). In addition,

we also compare their performance to that of two online learning algorithms proposed in the

literature for settings most similar to ours: (i) the UCB Algorithm for the Cascading Bandits
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problem proposed by Kveton et al. (2015a), and (ii) the Ranked Bandits Algorithm with EXP3

proposed by Radlinski et al. (2008). In addition to these papers being closely related to ours in

the context of product ranking, we also note that UCB and EXP3 are among the most commonly

studied learning algorithms in the literature, and thus make for logical benchmark choices.

For the Threshold Acceptance Algorithm, we chose parameter α to be small and constant across

events so that the threshold is lowered conservatively in each iteration, due to click probabilities

generally being in a fairly narrow range. We used a sample size of L = 500 customers for each

ranking offered during the learning phase; we present sensitivity analysis on this modeling choice

in Appendix C to evaluate the tradeoff between faster vs. more accurate learning. Finally, the

implementation of our algorithm includes two features that were not required to develop the theory

yet can make a considerable impact on performance in practice. First, we recognize that the

expected number of new customers that can be hooked by product i diminishes with rank due to

both expiring first impression windows and because as the rank increases, the customer has a higher

probability of getting hooked prior to seeing product i. We can therefore use ∆ir calculated at rank

r as an upper bound for ∆ir′ at rank r′ for any r′ > r; when selecting products to test for rank r,

we choose products in descending order of their tightest upper bound which allows us to quickly

find a product that passes the threshold requirement for fixing in rank r and eliminates having to

test clearly suboptimal products for each rank. Second, during the course of the algorithm, as we

evaluate the marginal benefit of a product at a given rank, the remaining unranked products are

placed in descending order of the upper bound described above. For products not yet tested in any

rank, we include them at the end of the ranking in increasing order of their Wayfair rank.

For our Simple Learning Algorithm, we use Exhaustive Sampling as a Black-Box in a manner

that ensures maximum consistency with the choices made for the Threshold Acceptance Algorithm.

Regarding the other online learning benchmarks, we implement the UCB Algorithm for the Cas-

cading Bandits problem from Kveton et al. (2015a), using a confidence interval of
√

2 log(t)

si
, where t

is the total number of customers encountered so far, and si indicates the number of customers who
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viewed product i at or before their first click. We also implement the Ranked Bandits Algorithm

from Radlinski et al. (2008) and use EXP3 from Auer et al. (2002) as a black-box for selecting

the product at each rank. We set the value of the learning parameter γ based on the lower bound

provided in Corollary 3.2 in Auer et al. (2002)—i.e., γ = n log(n)

(e−1)g
, where g is the maximum number

of clicks that any one product received in our dataset.

5.3. Results

For each event and set of model parameters, we conducted the following simulation 100 times. First,

we generated |T | customers such that each customer’s first impression window was drawn from Dk.

With probability q= |Tc|
|T | , pt is drawn from Dp; otherwise, pt = 0. We ran parallel copies of each of

the learning policies mentioned above as the customers t= 1, ..., |T | arrived sequentially. For each

algorithm, we calculated the percent of customers that were hooked. We also identified the percent

of customers that Wayfair’s static ranking hooked, which serves as a practical, popularity-based

benchmark for which to compare our algorithms. As mentioned previously, due to our choice of Dp

and Dk, this quantity is consistently very close to the actual percent of customers Wayfair hooked.

Figure 3 shows the simulation results for the performance of our Threshold Acceptance and

Simple Learning Algorithms, as well as the UCB Algorithm and Ranked Bandits (EXP3) Algorithm

benchmarks, compared to Wayfair’s static ranking (πWF ). In particular, for each online learning

algorithm, it displays the percent increase in the number of customers hooked by the algorithm

vs. Wayfair’s ranking:13 (total hooked customers by algorithm - total hooked customers by πWF )

/ (total hooked customers by πWF ). Across all six events, both our Threshold Acceptance and

Simple Learning Algorithms hook an average of 5-30% more customers than Wayfair’s ranking.

Interestingly, although theory predicts that the Simple Learning Algorithm would outperform

the Threshold Acceptance Algorithm when the number of customers is very large, we find that

the performance of the two algorithms are quite similar in practice, highlighting that any loss

in optimality incurred by the Threshold Acceptance Algorithm is offset by its shorter learning

13 Due to confidentiality, we report only relative metrics rather than disclosing the actual percent of hooked customers.
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Figure 3 Box & whisker plots for the percent increase in hooked customers over πWF achieved by the Ranked

Bandits, UCB, Threshold Acceptance, and Simple Learning Algorithms.

phase. We observe that on average, the Threshold Acceptance Algorithm required only 51% of the

customers that the Simple Learning Algorithm required for the learning phase, i.e., the Simple

Learning Algorithm takes almost twice as long to converge to an approximately-optimal ranking.

Compared to the UCB and Ranked Bandits (EXP3) Algorithms, we observe that our Threshold

Acceptance and Simple Learning Algorithms outperform the two benchmarks by a substantial

margin for five out of six events. The performance gap partially stems from the fact that both

the UCB and Ranked Bandits (EXP3) Algorithms are typically not very effective over small time

horizons, |T |. For the UCB Algorithm, this is further compounded by the fact that this policy does

not identify (approximately-)optimal rankings for our problem. In fact, this algorithm appears to

select solutions that interpolate between popular and diverse rankings, because of which we see an

improvement over Wayfair’s baseline but not our methods. Although the Ranked Bandits (EXP3)

Algorithm takes diversity into account, it still hooks fewer customers than our algorithms, likely

owing to its slower convergence.

Looking at Figure 3, there is variability in the performance of our algorithms both across sim-

ulations and across events. Variability across simulations primarily stems from a relatively low
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number of customers L who are offered each ranking compared to the number of possible pref-

erence vectors in Dp; thus, our algorithms may converge to a (slightly) different ranking in each

simulation. We note that both our Threshold Acceptance and Simple Learning Algorithms led to a

positive increase in the percent of hooked customers for nearly every simulation; this is not trivial -

if Wayfair’s ranking was optimal, our algorithms would perform worse due to exploring suboptimal

rankings before converging.

To better understand the variability in the performance of our algorithms across events, we

implemented the Greedy Algorithm for OffAR (Algorithm 1) as an offline benchmark and calculated

the percent of customers it would have hooked had it been offered (as a static ranking) to each of

the customers; we use this as an upper bound for the number of customers hooked by our algorithms

and πWF . Figure 4 compares the performance of the Threshold Acceptance Algorithm14 and πWF

to the static ranking output by the Greedy Algorithm for OffAR (πg): specifically, (total number

of hooked customers by our algorithm (or πWF )) / (total number of hooked customers by πg).

Across all six events, our Threshold Acceptance Algorithm has a consistently strong performance,

hooking an average of 89-95% of the total number of customers that πg hooks, which highlights

our algorithm’s ability to (approximately) converge to and achieve the results in the offline setting.

In contrast, there is considerable variability in the performance of Wayfair’s ranking across all

six events: πWF hooks an average of 68-90% of the total number of customers that πg hooks. For

events where Wayfair’s ranking was quite strong (B and F), our algorithm improved on Wayfair’s

ranking by 5-15%. For events where Wayfair’s ranking was not as strong (A, C, D, and E), our

algorithm improved on Wayfair’s ranking by 26-30%. Interestingly, the events where Wayfair’s

ranking was already quite strong (B and F) are possibly the two least diverse events, in that they

include products from the fewest number of product categories (Table 2). This suggests that our

algorithms can be most beneficial to retailers who offer a diverse set of products, as our algorithms

take such diversity into account when identifying the best ranking.

14 The performance of our Simple Learning Algorithm is very similar so we have omitted it for brevity.
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Figure 4 Box & whisker plots presenting the percent of total customers hooked by πg (the offline benchmark)

that are hooked by our Threshold Acceptance Algorithm and πWF

Remark 1. Estimating Bias Functions. For the sake of simplicity, we assumed in this section

that the bias function fit(χit(π)) is zero for all i, t and χit(π). It is worth reiterating that this

assumption does not in any way affect the performance of our algorithms as both Algorithm 2

and Algorithm 3 do not require estimating (pt,ft, kt). That being said, in situations where click

bias is known to be prevalent, it is possible to extend our inference methodology to estimate the

bias function under some conditions, should the company want to do so for other purposes. More

precisely, suppose that fit(χit(π)) = fi(χit(π)) for all t, i.e., the bias function is independent of

customer type. Then, one could use the clickstream data to measure fi(χ) for any given χ⊆ [n] as

follows:

fi(χ) = P(cit = 1 | E , ci′t = 1 ∀i′ ∈ χ)−P(cit = 1 | E , ci′t = 0 ∀i′ ∈ χ), (2)

where E denotes the event that the customer has not clicked on any products ranked ahead of

i other than those in χ and that the latter are indeed ranked at positions better than that of

i. In simple terms, Equation (2) is the marginal probability of clicking on product i conditional
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upon clicking on the products in χ. Unfortunately, the inference method described above may be

practically infeasible given the large number of candidate sets χ and the sparsity of clickstream

data. Therefore, in practice, retailers may choose some parametric form for the bias function before

estimation. For example, under the pairwise product correlation function mentioned in Section 2.1,

it is sufficient to solve for O(n2) parameters in total.

6. Conclusion

We study a crucial problem faced by many online retailers - that of developing fast online learning

approaches for computing near-optimal product rankings. We propose a novel model for online

learning-to-rank problems that captures a number of features unique to online retailers operating

in dynamic environments and which have yet to receive attention in the literature. Specifically,

we study scenarios where products are not necessarily characterized by a set of attributes and

where customers exhibit hedonic browsing behavior. By modeling customers with limited first

impression windows, we capture the position effect typically observed in online environments. Yet

our framework is more challenging as these first impression windows are unobserved and may be

correlated with customers’ interest in products. As such, our model is a significant departure from

existing work on ranking algorithms.

We present two learning algorithms for the online ranking problem: the Simple Learning Algo-

rithm and the Threshold Acceptance Algorithm. The former uses bandit algorithms for best-arm

identification as a black-box to achieve a (nearly) 1
2
-approximation guarantee but may require

O(n4) customer samples in the worst case. The latter algorithm is an order of magnitude faster

but its approximation guarantee becomes 1
2+α

for some parameter α> 0. Both of these algorithms

require no knowledge of customers’ intrinsic utilities, bias functions, or first impression windows,

and circumvent having to learn this distribution by directly learning the optimal ranking instead.

Another interesting feature of our algorithms is that they optimally balance popularity and diver-

sity, ensuring that the retailer hooks a broad base of customers.

We estimate the impact of our algorithms via simulations using clickstream data from Wayfair.

Across six different product assortments, our algorithms hook an average of 5-30% more customers
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than Wayfair’s static, popularity-based ranking. Furthermore, our algorithms hook 89-95% of the

total number of customers hooked by an offline benchmark. These simulations using real clickstream

data illustrate that our algorithmic contributions can make a significant impact in practice.

Although our model and results are motivated from the perspective of product ranking, we argue

that they may be relevant in any setting with dynamic assortments, products that may not be

characterized by a set of attributes, and customers with limited first impression windows. As a

concrete example, a digital media outlet could employ our algorithm to highlight ‘top articles’ -

by balancing popularity and diversity, the website could hook a larger fraction of its incoming

users. As another example, a retailer could balance popularity and diversity to select the ranking of

products to showcase in an email marketing campaign in hopes of maximizing overall click-through

rates.

Finally, we share opportunities for future work. First, retailers could benefit from understanding

the long-term value of a hooked customer. Although we make the very weak assumption that

a hooked customer browses for longer than one who is not hooked, it would be pertinent to

understand more details about a hooked customer’s browsing, purchasing, and return shopping

behavior. Second, “hedonic browsing” is a common customer behavior that many retailers face,

yet much of the academic work focuses primarily on customers who engage in “directed buying”,

i.e. who shop with the intent to purchase a product and have knowledge of what they are looking

for (Moe 2003). We hope that our work inspires others to consider studying the impact of hedonic

browsing behavior on a firm’s operational and marketing decisions.
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Kveton B, Wen Z, Ashkan A, Szepesvári C (2015b) Combinatorial cascading bandits. Advances in Neural

Information Processing Systems 28: Annual Conference on Neural Information Processing Systems,

1450–1458.
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Appendix A: Proofs

Proof of Proposition 1: Our proof involves showing a reduction from the deterministic maximum coverage

problem to a special case of OffAR. Since the deterministic maximum coverage problem is known to be

NP-Hard, the same claim follows for the special case of OffAR and thus the more general OffAR problem

is also NP-Hard. The deterministic maximum coverage problem is defined by a universe U of elements

{u1, u2, . . . , um}, a collection of n sets S = {S1, S2, . . . , Sn}, where Si ⊆U for all i, and finally a single integer

k such that 1≤ k ≤ n. The objective is to select at most k sets from S in order to maximize the number of

elements in U that are covered by (present in) at least one of the sets, i.e.

max
S′⊆S;|S′|≤k

∣∣∪Si∈S′ Si∣∣. (3)

The reduction is straightforward. Given an instance of the deterministic maximum coverage problem, we

construct an instance of OffAR with: (i) n products labeled by [n], such that product i corresponds to set

Si ∈ S; (ii) distribution D comprising of m customer types such that each type occurs with equal probability

1
m

, and for a customer t of the jth type, pit = 1 if and only if uj ∈ Si in the original problem. In other words,

we transform the problem so that for every set Si, a new product is created and for every element of the

universe U , there is a customer type who prefers all of the sets (products) which contain that element of the

universe (are liked by that customer type). Finally, all customers have a first impression window equal to k

in this reduced instance, and bias function fit(χ) = 0 for all i, t and χ⊆ [n]

Consider any ranking π and let Sπ(k)⊆S correspond to the top-k ranked products in π. Recall that π−1(j)

denotes the jth ranked product in π. Then, formally,

Sπ(k) = {Sπ−1(1), . . . , Sπ−1(k)}.

Let E[Ht(π)] be the probability that a single incoming customer drawn from D is hooked when she is

exposed to the ranking π. We then claim that for the deterministic maximum coverage problem with sets

Sπ(k) chosen, the number of elements in U that are covered is precisely mE[Ht(π)]. Indeed, consider any

customer type j belonging to the distribution D that is hooked by the ranking π: this implies that there

exists some i having π(i)≤ k such that uj ∈ Si. However, this in turn implies that the collection Sπ(k) must

cover the element uj in the universe. We further observe that each customer type in D (corresponding to an

element in the universe) occurs with equal probability 1
m

. Therefore, there is a one-to-one correspondence
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between the optimal solutions to the original, deterministic maximum coverage problem and the constructed

(stochastic) offline assortment ranking problem, which in turn implies the NP-Hardness of the latter. �

Notation for Subsequent Proofs Before proving Theorem 1, we introduce notation that will help stream-

line our presentation. Specifically, we use Ct(r,π) to denote the indicator random variable for the event that

a customer t does not click on any of the top-r ranked products in π, i.e., for 1≤ r≤ n

Ct(r,π) =
∏
j∈[r]

Cπ−1(j)t(π).

We define Ct(0, π) = 1 for notational convenience. As before, by indexing customer t, we implicitly assume

that this random variable is conditional on customer t’s type, (pt,ft, kt).

A subtle point bears mentioning here: Cπ−1(j)t(π) = 1 implies that either j > kt or the customer did not

click on product π−1(j) after seeing it. However, if the customer did not click on any of the top kt ranked

products, she is not hooked and therefore, cannot have clicked on any of the products with rank larger than

kt. Therefore, for any r > kt, Ct(r,π) =Ct(kt, π) and it is accurate to interpret Ct(r,π) = 1 as the event that

the customer did not click on any of the top-r ranked products under π.

Finally, we note the following equality that will be used in several proofs.

n∑
r=1

E
[
Ct(r− 1, π)Cπ−1(r)t(π)

]
=

n∑
r=1

E
[(

1−Ct(r,π)
)
−
(
1−Ct(r− 1, π)

)]
=E

[(
1−Ct(n,π)

)
−
(
1−Ct(0, π)

)]
=E[Ht(π)]. (4)

Proof of Theorem 1 Our objective is to prove that for any incoming customer t∼D, the probability that

this customer is hooked under the optimal ranking π∗ is at most twice the probability that she is hooked

under the greedy ranking πg. Mathematically, we need to prove that

E[Ht(π
∗)] = E[1−Ct(kt, π

∗)] ≤ 2 E[1−Ct(kt, π
g)] = 2E[Ht(π

g)],

where Ct(r,π) is defined immediately prior to the proof of this theorem.

We remark that the expectation involves two sources of uncertainty: (i) the fact that the arriving customer

t’s preferences (pt,ft, kt) are drawn from distribution D, and (ii) given customer t with preferences (pt,ft, kt),

the event that the customer clicks on product i within her first impression window is a random variable.
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Since Ht(π
∗) is conditional on (pt,ft, kt), one could rewrite the above expectation as E(pt,ft,kt) [E[Ht(π

∗)]],

where the inner expectation is the probability that a customer t is hooked given pt, ft and kt. For brevity,

we write Et for E(pt,ft,kt) in the rest of the proofs and capture both sources of uncertainty under a single

expectation without a subscript when the meaning is clear from the context. Suppose that π denotes some

arbitrary ranking. We begin by decomposing π∗ in terms of π and eventually substitute π= πg,

E[Ht(π
∗)] = E

[
1−Ct(kt, π

∗)
]

=E
[
1−Ct(n,π

∗)
]

(5)

≤E
[
1−Ct(n,π

∗)Ct(n,π)
]

(6)

=E
[
1−Ct(n,π)

]
+

n∑
r=1

E
[(

1−Ct(n,π)Ct(r,π
∗)
)
−
(
1−Ct(n,π)Ct(r− 1, π∗)

)]
(7)

=E[Ht(π)] +

n∑
r=1

E
[(

1−Ct(n,π)Ct(r,π
∗)]
)
−
(
1−Ct(n,π)Ct(r− 1, π∗)]

)]
=E[Ht(π)] +

n∑
r=1

E
[
Ct(n,π)

(
Ct(r− 1, π∗)−Ct(r,π

∗)
)]

=E[Ht(π)] +

n∑
r=1

E
[
Ct(n,π)Ct(r− 1, π∗)(1−Cπ∗−1(r)t(π

∗))
]

=E[Ht(π)] +

n∑
r=1

E
[
Ct(n,π)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]

≤E[Ht(π)] +

n∑
r=1

E
[
Ct(r− 1, π)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]
. (8)

Equality (5) follows from the definition that Cit(π) = 0 when π(i)>kt. Inequality (6) simply comes from the

fact that Ct(n,π)≤ 1 over all realizations. The equality in (7) is a rearrangement of E
[
1−Ct(n,π

∗)Ct(n,π)
]

in the form of a telescoping summation, i.e.,
∑n

r=1E
[(

1−Ct(n,π)Ct(r,π
∗)
)
−
(
1−Ct(n,π)Ct(r−1, π∗)

)]
=

E
[
1−Ct(n,π

∗)Ct(n,π)
]
−E

[
1−Ct(n,π)

]
. The intermediate steps between (7) and (8) follow from simple

algebraic manipulations and the definition of Cπ∗−1(r)t(π
∗). Inequality (8) follows because:

Ct(n,π) =
∏
j∈[n]

Cπ−1(j)t(π)≤
∏

j∈[r−1]

Cπ−1(j)t(π) =Ct(r− 1, π)

since the right-hand side refers to only a subset of the events on the left-hand side.

By substituting π= πg in (8), we get:

E[Ht(π
∗)]≤E[Ht(π

g)] +

n∑
r=1

E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]

(9)

To complete our proof, we next show that
∑n

r=1E
[
Ct(r − 1, πg)Ct(r − 1, π∗)Cπ∗−1(r)t(π

∗)
]
≤ E[Ht(π

g)].

Consider the term E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]

for any r ∈ [n]. We claim that

E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]
≤E

[
Ct(r− 1, πg)C(πg)−1(r)t(π

g)
]
. (10)
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Note that (πg)−1(r) denotes the product that is placed in the rth position under ranking πg. Equa-

tion (10) is formally presented and proved in Lemma 1 immediately following this proof, as it will be used

in subsequent proofs as well. Informally speaking, its proof follows directly from the property that for each

position r, the product (πg)−1(r) selected by the greedy algorithm provides more marginal benefit (i.e.,

E[Ct(r− 1, πg)C(πg)−1(r)t(π
g)]) than any other product that can be fixed in that position including π∗−1(r).

From Equation (10) and applying Equation (4), we have

n∑
r=1

E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]
≤

n∑
r=1

E
[
Ct(r− 1, πg)C(πg)−1(r)t(π

g)
]

=E[Ht(π
g)]. (11)

Combining (9) and (11), we have

E[Ht(π
∗)]≤E[Ht(π

g)] +

n∑
r=1

E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]
≤E[Ht(π

g)] +E[Ht(π
g)]. �

Lemma 1. Suppose that π∗ denotes the optimal ranking and πg denotes the ranking produced by the Greedy

Algorithm for OffAR. Let r≤ n denote any index. Then, we have that:

E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]
≤E

[
Ct(r− 1, πg)C(πg)−1(r)t(π

g)
]
.

Proof of Lemma 1: First, we define an alternative ranking π̃g such that for all j ≤ r − 1, (π̃g)−1(j) =

(πg)−1(j) and (π̃g)−1(r) = π∗−1(r). Recall that (π̃g)−1(j) and (πg)−1(j) refer to the product placed in the

jth rank under π̃g and πg, respectively. That is, π̃g mirrors the ranking πg in the first r− 1 positions and

shares the rth rank with ranking π∗. Let (π̃g)−1(j) = ∅ when j > r, i.e. no product is ranked in positions

greater than r.

Suppose that i denotes the rth ranked product in π∗, i.e. i, π∗−1(r). Going back to the expression in the

left hand side of the lemma statement, we can now rewrite it as,

E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]

=E
[
Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π

∗)
]

=Et
[
E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π

∗)| (pt,ft, kt)]
]

In the final term, the outer expectation is with respect to the randomness in the customer’s parameters

(i.e., (pt,ft, kt)) and the inner expectation is with respect to the randomness in the customer’s clicks given

pt,ft and kt. Note that since Ct(r − 1, πg), Ct(r − 1, π∗), and Cit(π
∗) are already defined conditional on
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(pt,ft, kt), the inner expectation is somewhat redundant. Fix an arbitrary customer t and the corresponding

type (pt,ft, kt). As an intermediate step to proving the lemma, we first show that for this fixed type:

E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π
∗)|(pt,ft, kt)]≤E[Ct(r− 1, π̃g)Cit(π̃

g)|(pt,ft, kt)]. (12)

For brevity, we ignore the conditional operator for the remainder of this argument. Consider the term in the

left hand side of (12). This represents the event that customer t does not click on the the first r− 1 ranked

products in both πg and π∗ but does click on the r–th ranked product in π∗, which is i. We can therefore

express this probabilistically as:

E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π
∗)] = Pr(Ct(r− 1, πg) = 1∩ Ct(r− 1, π∗) = 1∩Cit(π∗) = 1) (13)

≤ Pr
(
Ct(r− 1, πg) = 1∩Cit(π∗) = 1 | Ct(r− 1, π∗) = 1

)
. (14)

The inequality comes from the basic laws of probability. Namely, for any two events A,B, we have that

Pr(A∩B) = Pr(A|B)Pr(B)≤ Pr(A|B). We now consider two separate cases and prove (12) separately in

each of these cases.

• Case I: πg(i)< r:

As indicated by the above condition, suppose that product i is ranked at a position smaller than r in πg—let

πg(i) = j ≤ r− 1. Consider (14):

E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π
∗)]≤ Pr

(
Ct(r− 1, πg) = 1∩Cit(π∗) = 1 | Ct(r− 1, π∗) = 1

)
≤ Pr

(
Ct(j, π

g) = 1∩Cit(π∗) = 1 | Ct(r− 1, π∗) = 1
)
.

= Pr
(
Ct(j− 1, πg) = 1∩Cit(π

g) = 1∩Cit(π∗) = 1 | Ct(r− 1, π∗) = 1
)
.

≤ Pr
(
Cit(π

g) = 1∩Cit(π∗) = 1 | Ct(r− 1, π∗) = 1∩Ct(j− 1, πg) = 1
)
.

Since product i is ranked at position j in πg, we have: Ct(r−1, πg)≤Ct(j, π
g)—this gives rise to the second

inequality. The final inequality follows from the same reasoning as (14).

Consider the final term above. For any ranking π, we know that conditional on no prior clicks, the event that

a given customer t clicks on product i is a Bernoulli random variable with probability pit+fit(∅) = pit. Thus,

conditional on (pt,ft, kt) and given no prior clicks in either ranking πg or π∗, for any particular instantiation

of the Bernoulli random variables corresponding to customer t, we have that

Pr
(
Cit(π

g) = 1∩Cit(π∗) = 1 | Ct(r− 1, π∗) = 1∩Ct(j− 1, πg) = 1
)

= 0.
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In conclusion, the required inequality is true trivially:

E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π
∗)] = 0≤E[Ct(r− 1, π̃g)Cit(π̃

g)].

• Case II: πg(i)≥ r:

In this case, product i is not present in the first r− 1 ranks under πg. Therefore, we note that conditional

on Ct(r− 1, π∗) = 1 the following two events:

E1 :Ct(r− 1, πg) = 1, E2 :Cit(π
∗) = 1

are independent of each other. Using this, we can simplify (13) as:

E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π
∗)]

= Pr
(
Ct(r− 1, πg) = 1∩Cit(π∗) = 1 | Ct(r− 1, π∗) = 1

)
Pr(Ct(r− 1, π∗) = 1)

= Pr
(
Ct(r− 1, πg) = 1 | Ct(r− 1, π∗) = 1

)
Pr
(
Cit(π

∗) = 1 | Ct(r− 1, π∗) = 1
)
Pr(Ct(r− 1, π∗) = 1)

= Pr
(
Ct(r− 1, π̃g) = 1 | Ct(r− 1, π∗) = 1

)
Pr(Ct(r− 1, π∗) = 1)Pr

(
Cit(π̃

g) = 1 | Ct(r− 1, π̃g) = 1
)

(15)

= Pr
(
Ct(r− 1, π̃g) = 1∩Ct(r− 1, π∗) = 1

)
Pr
(
Cit(π̃

g) = 1 | Ct(r− 1, π̃g) = 1
)

≤ Pr
(
Ct(r− 1, π̃g) = 1

)
Pr
(
Cit(π̃

g) = 1 | Ct(r− 1, π̃g) = 1
)

= Pr
(
Cit(π̃

g) = 1∩Ct(r− 1, π̃g) = 1
)

=E[Ct(r− 1, π̃g)Cit(π̃
g)].

The second expression comes from the fact that the events E1 and E2 are independent of each other. Equa-

tion (15) is a consequence of the following two observations:

1. The rankings πg and π̃g contain the exact same products in the first r− 1 positions. Therefore, Ct(r−

1, πg) =Ct(r− 1, π̃g) for any particular instantiation of customer t’s clicks.

2. Consider the two rankings π∗ and π̃g: in both of these, product i is ranked at position r. Further, for

both of these rankings, the event that customer t clicks on product i conditional on not clicking on the

previous r− 1 ranks is simply a Bernoulli random variable with probability pit. So, it must be the case that

Pr
(
Cit(π

∗) = 1 | Ct(r− 1, π∗) = 1
)

= Pr
(
Cit(π̃

g) = 1 | Ct(r− 1, π̃g) = 1
)
. Note that if kt < r, this equality is

trivially true.
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To summarize, whether or not πg(i)< r, we have shown that E[Ct(r−1, πg)Ct(r−1, π∗)Cit(π
∗)]≤ E[Ct(r−

1, π̃g)Cit(π̃
g)]. We are now ready to complete the proof of the lemma.

E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π
∗)] = Et

[
E[Ct(r− 1, πg)Ct(r− 1, π∗)Cit(π

∗)| (pt,ft, kt)]
]

≤Et
[
E[Ct(r− 1, π̃g)Cit(π̃

g)| (pt,ft, kt)]
]

=E[Ct(r− 1, π̃g)Cit(π̃
g)
]

≤E[Ct(r− 1, πg)C(πg)−1(r)t(π
g)
]
. (16)

The last inequality comes from the fact that for each rank r, the Greedy Algorithm for OffAR tries all of the

remaining items in position r keeping the previous ranks fixed. The product having the maximum marginal

utility (probability that the customer clicks on rank r but not the ones before) is selected. Mathematically,

this implies that if πg(i)≥ r, we have E[Ct(r− 1, π̃g)Cit(π̃
g)
]
≤ E[Ct(r− 1, πg)C(πg)−1(r)t(π

g)
]
. If πg(i)< r,

we have Ct(r− 1, π̃g)Cit(π̃
g)≤Cit(π̃

g)Cit(π̃
g) = 0, so (16) follows trivially. �

Proof of Theorem 2: We first introduce some notation that will be helpful in our proof. Since the intrinsic

probabilities, bias functions, and the first impression windows are all independent of each other, let Dp,Df ,Dk

denote the distributions of these three parameters, respectively, such that D=Dp×Df ×Dk. As before, let

π∗ denote the optimal ranking and πg denote the ranking that results from the Greedy Algorithm for OffAR

for any instance where (pt,ft, kt)∼D. With slight abuse of notation and for this proof only, we let π∗k and

πgk denote the optimal and greedy rankings, respectively, for instances where pt ∼ Dp,ft ∼ Df , kt = k, i.e.,

where all customers have a first impression window exactly equal to k. Finally, for any ranking π, we use

[π]r to denote the sub-ranking comprising only of the first r positions in π, i.e., [π]r(i) = π(i) if π(i)≤ r and

we define [π]r(i) = ∅ otherwise.

The proof comprises of two components. First, we show that for every k, πgk = [πg]k, i.e. the ranking returned

by the Greedy Algorithm for OffAR when pt ∼Dp,ft ∼Df , kt = k is equivalent to the first k positions15 in

ranking πg, and hence πg is a (1− 1
e
)-approximation to π∗k. Second, we prove that

∑n

k=1EDp,Df [Ht(π
∗
k)|kt =

k]Pr(kt = k)≥ED[Ht(π
∗)]. That is, the performance of the optimal ranking π∗ is not better than a linear

15 Technically, πgk contains products in positions beyond k as well but since all customers have first impression windows

equal to k we can safely assume that (πgk)−1(j) = ∅ when j > k.
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combination of the performance of rankings π∗k weighted according to the probability that a customer has a

first impression window equal to k.

We begin by proving that πgk is a (1− 1
e
)-approximation to π∗k. Fix any k and suppose that kt = k for all

t. For a constant first impression window (kt = k), OffAR is simply a special case of stochastic submodular

optimization and therefore, we can leverage known results (Asadpour and Nazerzadeh 2015) to infer that πgk

is a (1− 1
e
)-approximation to π∗k.

We next prove that πgk coincides with [πg]k by induction on the ranks, specifically, (πgk)−1(r) = (πg)−1(r)

for every 1≤ r≤ k. We remind the reader that the inverse functions here capture the product placed in the

rth position in the corresponding rankings. We define π−1(0) = ∅ for every ranking π and thus the claim is

trivially true when r = 0. Our inductive hypothesis is that (πgk)−1(j) = (πg)−1(j) for j = 1, ..., r− 1. Recall

that [π]r−1 refers to the sub-ranking of π with only the first r− 1 positions filled, and let [π]r−1 ∪ i refer to

the ranking where the first r− 1 positions coincide with π and product i is placed in the rth rank. Now, the

rth ranked product in the greedy ranking when kt = k can be mathematically characterized as:

(πgk)−1(r) = arg max
i∈[n]

Ept∼Dp
ft∼Df
kt=k

[Ht([π
g
k]r−1 ∪ i)−Ht([π

g
k]r−1)] = arg max

i∈[n]
Ept∼Dp
ft∼Df
kt=k

[Ht([π
g]r−1 ∪ i)−Ht([π

g]r−1)] ,

(17)

where the second equality follows from the inductive hypothesis. Since πg is the greedy ranking when customer

profiles are drawn from D, the product placed in rank r is chosen according to the following equation.

(πg)−1(r) = arg max
i∈[n]

Ept∼Dp
ft∼Df
kt∼Dk

[Ht([π
g]r−1 ∪ i)−Ht([π

g]r−1)]

= arg max
i∈[n]

Ept∼Dp
ft∼Df

[Ht([π
g]r−1 ∪ i)−Ht([π

g]r−1)|kt ≥ r]Pr(kt ≥ r)

= arg max
i∈[n]

Ept∼Dp
ft∼Df

[Ht([π
g]r−1 ∪ i)−Ht([π

g]r−1)|kt ≥ r]

= arg max
i∈[n]

Ept∼Dp
ft∼Df

[Ht([π
g]r−1 ∪ i)−Ht([π

g]r−1)|kt = k] (18)

= arg max
i∈[n]

Ept∼Dp
ft∼Df
kt=k

[Ht([π
g]r−1 ∪ i)−Ht([π

g]r−1)] = (πg)−1k (r). (19)

The second equality is crucially dependent on the independence between the first impression windows and

the intrinsic click probabilities and the bias functions. It follows from the fact that when kt < r, Ht([π
g]r−1∪

i)−Ht([π
g]r−1) = 0 for all i∈ [n]. Moreover, Pr(kt ≥ r) is a constant that is independent of Dp and Df . Note

that we removed the expectation over Dk because once we condition on kt ≥ r, the exact value of kt does
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not matter since Ht([π
g]r−1∪ i) does not contain any products at ranks beyond r. The third equality follows

since the index at which a variable is maximized does not change when multiplied by a constant - in this

case Pr(kt ≥ r). Equality (18) is due to the fact that customer preferences do not depend on the exact value

of the first impression window; moreover, both [πg]r−1 ∪ i and [πg]r−1 do not have any products in ranks

greater than r, and therefore do not have any products in ranks greater than k, which by definition is larger

than or equal to r. Equation (19) follows from (17) and completes the inductive argument. Thus, we have

for all k ∈ [1, n],

Ept∼Dp
ft∼Df
kt=k

[Ht(π
g)] = Ept∼Dp

ft∼Df
kt=k

[Ht(π
g
k)]≥ (1− 1

e
)Ept∼Dp
ft∼Df
kt=k

[Ht(π
∗
k)]. (20)

We move on to the second part of the proof, where we relate the hook probability of π∗k to that of π∗.

Note that for the instance where pt ∼Dp, ft ∼Df , and kt = k, π∗k is the optimal ranking and therefore, its

performance must surpass that of π∗. This gives us,

Ept∼Dp
ft∼Df
kt=k

[Ht(π
∗
k)]≥Ept∼Dp

ft∼Df
kt=k

[Ht(π
∗)] ∀k ∈ [1, n]

=⇒
n∑
k=1

Ept∼Dp
ft∼Df
kt=k

[Ht(π
∗
k)]Pr(kt = k)≥

n∑
k=1

Ept∼Dp
ft∼Df
kt=k

[Ht(π
∗)]Pr(kt = k)

=Ept∼Dp
ft∼Df

[
n∑
k=1

E[Ht(π
∗)|kt = k]Pr(kt = k)

]

=Ept∼Dp
ft∼Df
kt∼Dk

[Ht(π
∗)].

Combining the above inequality with (20), the theorem follows. That is,

Ept∼Dp
ft∼Df
kt∼Dk

[Ht(π
g)] =

n∑
k=1

Ept∼Dp
ft∼Df
kt=k

[Ht(π
g)]Pr(kt = k)

≥ (1− 1

e
)

n∑
k=1

Ept∼Dp
ft∼Df
kt=k

[Ht(π
∗
k)]Pr(kt = k)

≥ (1− 1

e
)Ept∼Dp
ft∼Df
kt∼Dk

[Ht(π
∗)]. �

Proof of Theorem 3 We only prove the ≈ 1
2
-approximation guarantee for OnAR in the case when the

click probabilities, bias functions, and first impression windows are correlated;16 the proof for the ≈ (1− 1
e
)-

approximation guarantee for OnAR with Independence follows in an almost identical fashion using the

16 i.e., D cannot be decomposed into three separate distributions as in the proof of Theorem 2.
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independence arguments outlined in the proof of Theorem 2, so we avoid reproving it to minimize redundancy.

Recall that π̃ denotes the output of Algorithm 2 while π∗ is the optimal ranking. As in the proof of Theorem 2,

suppose that for any ranking π, [π]r is the sub-ranking of π such that [π]r(i) = π(i) if π(i)≤ r and we define

[π]r(i) = ∅ otherwise. Finally, let [π]r ∪ i be an augmentation of [π]r such that its first r positions coincide

with π and product i is placed in rank r+ 1.

Now, as per Definition 1 and Algorithm 2, we can infer that for any given rank r, the product π̃−1(r) is a

( 2ε
n
, δ
n

)-PAC approximation to the best product at rank r subject to the products already fixed at previous

ranks. Formally, with probability 1− δ
n

, the following inequality holds for each r ∈ [1, n]:

E[Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)]≥max
i∈[n]

E[Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)]−
2ε

n
, (21)

We note that even though π̃ is itself a random ranking due to sampling differences, (21) holds for any

particular instantiation of [π̃]r−1 with probability 1− δ
n

. Recall that Ct(r− 1, π̃) = 1 when customer t does

not click on any of the first r− 1 ranked products in π̃ conditional on (pt,ft, kt). Therefore, the left hand

side of the above inequality is the probability that an incoming customer t is ‘hooked’ by the rth ranked

product in π̃ for some fixed instantiation of [π̃]r−1. Suppose that for each r, Br denotes the event that (21)

holds for index r, i.e., Br = 1 if (21) is true and is zero if the inequality is not true. We have Pr(Br = 0)≤ δ
n

for all r ∈ [1, n].

From the union bound, we have that:

Pr(Br = 1 ∀r) = 1−Pr(∃r :Br = 0)≥ 1−
n∑
r=1

Pr(Br = 0)≥ 1−n δ
n

= 1− δ. (22)

In simple terms, by applying the union bound, we can infer that with probability 1−δ, the ranking output

by our algorithm satisfies the following condition: for all r ∈ [n], the product at rank r in π̃ is approximately

optimal for that rank with respect to the products fixed at previous ranks. For the rest of this proof, we only

concern ourselves with rankings π̃ output by our algorithm where Br = 1 for all r, which happens to be the

case with probability 1− δ.

Specifically, let us fix the ranking π̃ returned by Algorithm 2 such that this ranking satisfies the condition

in (22). For any such fixed ranking π̃, we aim to show that E[Ht(π̃)] ≥ 1
2
E[Ht(π

∗)] − ε, or equivalently,

E[Ht(π
∗)]≤ 2E[Ht(π̃)] + 2ε. By applying (8) from the proof of Theorem 1 with π= π̃, we get that:

E[Ht(π
∗)]≤E[Ht(π̃)] +

n∑
r=1

E
[
Ct(r− 1, π̃)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]
. (23)
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Fix some rank r and suppose that π∗−1(r) = i∗. Now proceeding exactly as in Lemma 1, for any r ≥ 1, we

have:

E
[
Ct(r− 1, π̃)Ct(r− 1, π∗)Ci∗t(π

∗)
]
≤E

[
Ct(r− 1, π̃)Ci∗t([π̃]r−1 ∪ i∗)

]
. (24)

To see why this is the case, first suppose that17 π̃−1(i) ≥ r. Then, using arguments similar to those in

Lemma 1, we can bound

E
[
Ct(r− 1, π̃)Ct(r− 1, π∗)Ci∗t(π

∗)
]

= Pr
(
Ct(r− 1, π̃)Ct(r− 1, π∗)Ci∗t(π

∗) = 1
)

= Pr
(
Ci∗t(π

∗) = 1 | Ct(r− 1, π∗)Ct(r− 1, π̃) = 1
)
Pr(Ct(r− 1, π∗)Ct(r− 1, π̃) = 1)

≤ Pr
(
Ci∗t([π̃]r−1 ∪ i∗) = 1 | Ct(r− 1, [π̃]r−1 ∪ i∗) = 1

)
Pr(Ct(r− 1, π̃) = 1)

= Pr
(
Ct(r− 1, [π̃]r−1 ∪ i∗)Ci∗t([π̃]r−1 ∪ i∗) = 1

)
=E

[
Ct(r− 1, π̃)Ci∗t([π̃]r−1 ∪ i∗)

]
,

where the inequality relies on the fact that Pr
(
Ci∗t(π

∗) = 1 | Ct(r− 1, π∗)Ct(r− 1, π̃) = 1
)

= Et[pi∗t] =

Pr
(
Ci∗t([π̃]r−1 ∪ i∗) = 1 | Ct(r− 1, [π̃]r−1 ∪ i∗) = 1

)
.

Now that we have shown E
[
Ct(r − 1, π̃)Ci∗t([π̃]r−1 ∪ i∗)

]
is an upper bound for E

[
Ct(r − 1, π̃)Ct(r −

1, π∗)Ci∗t(π
∗)
]
, we can leverage (21) and continue with the proof:

E
[
Ct(r− 1, π̃)Ct(r− 1, π∗)Ci∗t(π

∗)
]
≤E

[
Ct(r− 1, π̃)Ci∗t([π̃]r−1 ∪ i∗)

]
≤max

i∈[n]
E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
≤E[Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)] +

2ε

n
. (25)

Substituting (25) into (23), we have

E[Ht(π
∗)]≤E[Ht(π̃)] +

n∑
r=1

E
[
Ct(r− 1, π̃)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]

≤E[Ht(π̃)] +

n∑
r=1

(
E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+

2ε

n

)
=E[Ht(π̃)] +

n∑
r=1

E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+ 2ε

=E[Ht(π̃)] +E[Ht(π̃)] + 2ε (26)

17 When π̃−1(i)< r, (24) holds trivially at equality since both the left and right hand sides evaluate to zero.
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= 2E[Ht(π̃)] + 2ε

where (26) follows by applying (4). �

Proof of Theorem 4 Without loss of generality, we assume that log1+α(n
ε
) is integral, and so during the

course of the algorithm, τ ∈ {1, 1
1+α

, 1
(1+α)2

, . . . , ε
n
}.18 For the purpose of this proof, we will also implicitly

assume that the parameters α, ε, δ are chosen such that n≥ log1+α(n
ε
). Indeed, when this is not the case, the

length of the learning phase for the Threshold Acceptance Algorithm becomes Ω(n4) and it is advantageous

to run Algorithm 2 instead.

Recall that for a fixed threshold τ , our algorithm takes one pass through the set of available products

and fixes any product at the smallest open rank as long as its marginal benefit at that rank is at least τ .

Therefore, for a given threshold, the algorithm could assign multiple products to successive ranks as long as

the marginal benefit of all of these products meet the threshold at the corresponding ranks. Subsequently,

the threshold is lowered to 1
1+α

τ for the given parameter α > 0, and the above process is repeated on the

remaining, unranked products.

We first introduce pertinent notation. For any rank r ∈ [1, n], let τr be the threshold value that the product

π̃−1(r) had met in order to be assigned to the corresponding rank. Conversely, let r(τ) be the smallest rank at

which our algorithm considers the threshold τ or, equivalently, the rank when the algorithm transitions from

a threshold of (1 +α)τ to τ . Due to the fact that the thresholds are monotonically decreasing, this implies

that for all r′ < r(τ), τr′ > τ . As in earlier proofs, suppose that for any ranking π, [π]r is the sub-ranking of π

such that [π]r(i) = π(i) if π(i)≤ r and we define [π]r(i) = ∅ otherwise. Finally, let [π]r ∪ i be an augmentation

of [π]r such that its first r positions coincide with π and product i is placed in rank r+ 1.

In the first part of our proof, we will use Hoeffding’s inequality to bound the expected number of new

customers hooked at each rank. We move the details of Hoeffding’s inequality to Lemmas 2 and 3 immediately

following this proof for ease of exposition. Consider the product π̃−1(r) that our algorithm fixes at rank

r. We know that ranking [π̃]r was displayed to L = n2

ε2
log( n√

δ
) customers, and at least a fraction τr of

these customers clicked exclusively on product π̃−1(r). Consider the Bernoulli random variable X =Ct(r−

18 Since log1+α(n
ε
) is integral, this implies that there exists an integer a such that τmax

(
1

1+α

)a
= τmin = ε

n
. Therefore,

Algorithm 3 tries out exactly a+ 1 different values of τ belonging to the set {1, 1
1+α

, 1
(1+α)2

, . . . , ε
n
}.
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1, [π̃]r)Cπ̃−1(r)t([π̃]r) which equals one if the customer clicks on the product at rank r without clicking on

any of the previously ranked products and is zero otherwise. We have 1
L

∑L

i=1Xi ≥ τr, where Xi denotes the

i–th sample of the Bernoulli random variable X corresponding to customer i≤ L. Applying Lemma 2, we

have that with probability at least 1− δ
n2 , the following inequality is true:

E
[
Ct(r− 1, [π̃]r)Cπ̃−1(r)t([π̃]r)

]
≥ 1

L

L∑
i=1

Xi−
ε

n
≥ τr −

ε

n
. (27)

We note that since Ct(r− 1, [π̃]r)Cπ̃−1(r)t([π̃]r) evaluates to zero whenever the customer clicks on one of the

top r− 1 ranked products, its expectation does not depend on the exact form of the bias function fit(χ).

Further, even though [π̃]r is itself a random ranking, the above inequality holds with probability at least

1− δ
n2 for any particular instantiation of [π̃]r−1. Finally, since [π̃]r coincides with π̃ in its first r positions,

Equation (27) is equivalent to writing:

E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
≥ 1

L

L∑
i=1

Xi−
ε

n
≥ τr −

ε

n
. (28)

Let U (τ) be the random set of unranked products when the algorithm lowers the threshold from (1 +α)τ to

τ , for any arbitrary τ in the domain { 1
1+α

, 1
(1+α)2

, . . . , ε
n
, ε
n(1+α)

}. For τ = 1, we define U (τ) = [n], since none

of the products are assigned at the beginning of our algorithm. For any i∈U (τ), there must exist some rank

r′ ≤ r(τ) at which L customers were shown the ranking [π̃]r′−1 ∪ i and the fraction that clicked on product

i without clicking on any of the previously ranked products was smaller than (1 +α)τ . Applying Lemma 3

for some given τ in the above range with r′ being the rank where product i did not meet the threshold, we

have that with probability at least 1− δ
n2

E
[
Ct(r

′− 1, [π̃]r′−1 ∪ i)Cit([π̃]r′−1 ∪ i)
]
≤ 1

L

L∑
j=1

Xj +
ε

n
< (1 +α)τ +

ε

n
, (29)

where (Xj)
L
j=1 is the instantiation of the random variable Ct(r

′ − 1, [π̃]r′−1 ∪ i)Cit([π̃]r′−1 ∪ i)) when the

ranking [π̃]r′−1 ∪ i was displayed to each of the L customers.

Since r′ ≤ r(τ) and [π̃]r−1∪ i coincides with π̃ in its first r−1 positions, by monotonicity, we also have that

E
[
Ct(r

(τ)− 1, π̃)Cit([π̃]r(τ)−1 ∪ i)
]
≤E

[
Ct(r

′− 1, [π̃]r′−1 ∪ i)Cit([π̃]r′−1 ∪ i)
]
.

We remark that the above inequality is independent of the exact functional form of the bias function. To see

why, first note that for any fixed customer type, not clicking on the first r(τ)−1 products in π̃ implies that the

customer does not click on the first r′−1 products in π̃ as well; similarly with not clicking on product i at ranks
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r(τ) versus r′, assuming no prior clicks. Therefore, the set of events where Ct(r
′−1, [π̃]r′−1∪ i)Cit([π̃]r′−1∪ i)

evaluates to zero is a subset of the set of events where Ct(r
(τ)−1, π̃)Cit([π̃]r(τ)−1∪ i) evaluates to zero. Hence,

the alteration of the click probabilities once the customer gets hooked does not affect the value of either of

these quantities. Combining the above inequality with (29), for all τ and all i ∈ U (τ), the following holds19

with probability at least 1− δ
n2 :

E
[
Ct(r

(τ)− 1, π̃)Cit([π̃]r(τ)−1 ∪ i)
]
≤ (1 +α)τ +

ε

n
. (30)

Once again, we highlight that the above inequality holds for any particular instantiation of [π̃]r(τ)−1. Let

us use E
(τ)
i to denote the event (indicator variable) that (30) is true for a given τ and i∈U (τ) for the ranking

output by our algorithm. We know that Pr(E
(τ)
i = 0)≤ δ

n2 . Analogously let Fr be the event that (28) is true

for a given rank r at which π̃−1(r) 6= ∅. We also have Pr(Fr = 0)≤ δ
n2 . Applying the union bound as we did

in the proof of Theorem 3, we get that for a given τ :

Pr
(
∃i∈U (τ) s.t. E

(τ)
i = 0

⋃
∃r : τr = (1 +α)τ s.t. Fr = 0

)
≤
∑
i∈U(τ)

Pr(E
(τ)
i = 0) +

∑
r

τr=(1+α)τ

Pr(Fr = 0)

≤
∑
i∈U(τ)

δ

n2
+

∑
r

τr=(1+α)τ

δ

n2

≤ n
( δ
n2

)
=
δ

n
.

The final inequality comes from the fact that |U (τ)|+ |r : τr = (1 +α)τ | ≤ n because the products that are

fixed in the ranks specified by the set {r : τr = (1 +α)τ} must by definition belong to the set [n] \U (τ). We

can apply the above inequality over all feasible threshold values τ to get

Pr
(
∃τ : {∃i∈U (τ) s.t. E

(τ)
i = 0

⋃
∃r : τr = (1 +α)τ s.t. Fr = 0}

)
≤ log1+α(

n

ε
)
δ

n
≤ δ. (31)

Here, we used the fact that the number of feasible values of τ is exactly log1+α(n
ε
), which by our assumption

is no larger than n. Informally, (31) gives an upper bound on the (error) probability that the empirical

marginal click probabilities estimated by our algorithm are not close to the true click probabilities for all

thresholds and all ranks and products corresponding to those thresholds.

Now that we have bounded the expected number of new customers hooked at each rank, for the rest of

this proof we will consider the regime where these empirical estimates are close to their expected values, i.e.

19 We note that inequality (30) is trivially true for τ = 1 because the right hand side is greater than one, and the click

probability cannot exceed this value.
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we only consider rankings π̃ output by our algorithm such that E
(τ)
i = 1 ∀i∈U (τ)

⋂
Fr = 1 ∀r : τr = (1 +α)τ

for all τ . We know that with probability 1− δ, our algorithm returns such a ranking. We aim to show that

in this regime, any ranking π̃ computed by our algorithm satisfies: E[Ht(π̃)]≥ 1
2+α

E[Ht(π
∗)]− ε.

Consider a fixed ranking π̃ returned by our algorithm that satisfies the conditions mentioned above. We

apply (8) from the proof of Theorem 1 with π= π̃ to get that

E[Ht(π
∗)]≤E[Ht(π̃)] +

n∑
r=1

E
[
Ct(r− 1, π̃)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
]

≤E[Ht(π̃)] +

n∑
r=1

E
[
Ct(r− 1, π̃)Cπ∗−1(r)t([π̃]r−1 ∪π∗−1(r))

]
(32)

≤E[Ht(π̃)] +

n∑
r=1

max
i∈[n]

E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
=E[Ht(π̃)] +

n∑
r=1

max
i∈U(τr )

E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
(33)

≤E[Ht(π̃)] +

n∑
r=1

(
(1 +α)τr +

ε

n

)
. (34)

We note Inequality (32) follows from the same reasoning used in the first half of the proof of Lemma 1, so

we do not repeat it here. For (33), we replaced the set [n] by U (τr), the latter being a (superset) of the set

of unassigned products when the algorithm considers the rank r. Note that for all i /∈ U τr , π̃(i)< r and so,

E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
= 0. Finally, (34) comes from (30).

Now, suppose that Algorithm 3 returns a ranking π̃, with products assigned to ranks one through n′ <n.

In this case, we can once again apply (30) and infer that the marginal benefit for all of the unranked products

at rank n′+ 1 must be strictly smaller than τmin + ε
n

- if this were not the case, these products would have

already been fixed at rank n′+ 1 or earlier. Thus our algorithm ends by updating τn′+1 = τmin

1+α
; equivalently,

when r > n′, (1 + α)τr = ε
n

since τmin = ε
n

in the theorem statement. We slightly abuse notation and use

U (τr) = U
( ε
n(1+α)

)
for any r > n′, with the implication being that this set contains products that were not

fixed at any rank at the conclusion of our algorithm. We now continue with (34):

E[Ht(π
∗)]≤E[Ht(π̃)] +

n∑
r=1

(
(1 +α)τr +

ε

n

)
=E[Ht(π̃)] +

n′∑
r=1

(1 +α)(τr) +

n∑
r=n′+1

(1 +α)(τr) + ε

=E[Ht(π̃)] +

n′∑
r=1

(1 +α)(τr) + (n−n′) ε
n

+ ε

≤E[Ht(π̃)] +

n′∑
r=1

(1 +α)(E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+
ε

n
) + (n−n′) ε

n
+ ε (35)
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≤E[Ht(π̃)] + (1 +α)

n′∑
r=1

E
[
Ct(r− 1, π̃)Cπ̃−1(r)t(π̃)

]
+ (1 +α)ε+ ε

=E[Ht(π̃)] + (1 +α)E[Ht(π̃)] + (2 +α)ε

Inequality (35) comes from (28). In the final step, we used (4).

To conclude, we are left with

E[Ht(π
∗)]≤ (2 +α)E[Ht(π̃)] + (2 +α)ε,

which in turn implies the statement of the theorem. �

The following lemmas are used in the preceding proof of Theorem 4, and both their proofs follow from the

standard Hoeffding inequality.

Lemma 2. Given i ∈ [n] and r ∈ [n], suppose that X1,X2, . . . ,XL are independent samples of the random

variable Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i). Then, we have that:

Pr

(
L∑
j=1

Xj

L
−E

[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
>
ε

n

)
≤ exp(−2

ε2

n2
L).

Lemma 3. Given i ∈ [n] and r ∈ [n], suppose that X1,X2, . . . ,XL are independent samples of the random

variable Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i). Then, we have that:

Pr

(
E
[
Ct(r− 1, π̃)Cit([π̃]r−1 ∪ i)

]
−

L∑
j=1

Xj

L
>
ε

n

)
≤ exp(−2

ε2

n2
L).

Proof of Theorem 5 Since the proof is rather similar to that of Theorem 4, we merely highlight the

key details and crucial differences. First, let us verify the length of the learning phase from the theorem

statement. As we did previously, we assume without loss of generality that log1+α(rmax
n
ε
) is integral, and so

during the course of the algorithm, τ takes on values from the set {rmax,
rmax

1+α
, rmax

(1+α)2
, . . . , ε

n
}. It is not hard to

deduce that the cardinality of this set is 1+ log1+α(rmax
n
ε
). Now, for any fixed value of τ and CurrentRank,

according to Algorithm 4, we iterate over the products in U and for each i∈U , we display the corresponding

ranking π̃ri to at most L customers. Since |U | ≤ n at any given round, the total number of samples required

before the learning phase terminates can be expressed as (1 + log1+α(rmax
n
ε
)) ·n ·L. Substituting the value

for L gives us the second half of the theorem statement.

Similar to the proof of Theorem 4, suppose that we assign product i at ranking r when the threshold was

τr. Then, according to Algorithm 4, this was achieved by displaying a rank π̃ri to L customers such that
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π̃ri (i) = r, and ensuring that the empirical average of the revenue from the customers who got hooked by first

clicking on product i was at least τr.

Let Rt(π) be a random variable that denotes the revenue due to an incoming customer t when the platfrom

selects a ranking π. Given ranking π̃ri as mentioned above, suppose that X is a random variable that

represents the revenue from a customer t if and only if the customer does not click on any of the top

r− 1 ranked products, and clicks on product i at position r; otherwise X = 0. Mathematically, X =Ct(r−

1, π̃ri )Cit(π̃
r
i )Rt(π̃

r
i )—note that X = Rt(π̃

r
i ) if and only if Ct(r − 1, π̃ri )Cit(π̃

r
i ) = 1 and otherwise is 0. The

expectation of this random variable is E[X] = Et
[
Pr
(
Ct(r− 1, π̃ri )Cit(π̃

r
i ) = 1

)∑
i∈[n] riφt(i, [n])

]
, where we

note that Ct(r− 1, π̃ri ), Cit(π̃
r
i ), and φt(i, [n]) are all defined conditional on (pt, kt,νt).

Let X1,X2, . . . ,XL denote L i.i.d instantiations of X obtained during the course of our algorithm just

before product i was assigned to position r. Since product i was assigned at a threshold τr, we have that:

1

L

L∑
j=1

Xj ≥ τr.

We can now apply Hoeffding’s Inequality to prove that the expected marginal revenue due to product i is

very close to τr with high probability—i.e., i is a ‘good’ product. Formally, since X ≤Rt(π) ∈ [0, rmax], we

invoke Lemma 5 with i.i.d random variables (Xj)
L
j=1 and a= 0, b= rmax so that with (high) probability at

least 1− exp
(
−2L ε2

n2r2max

)
, the following inequality holds:

Et
[
Pr
(
Ct(r− 1, π̃ri )Cit(π̃

r
i ) = 1

)∑
i∈[n]

riφt(i, [n])
]
≥ 1

L

L∑
j=1

Xj −
ε

n
≥ τr −

ε

n
.

Plugging in L=
n2r2max

ε2
log( n√

δ
), we get the following lower bound on the expected marginal revenue due to

product i with probability at least 1− δ
n2 :

Et
[
Pr
(
Ct(r− 1, π̃ri )Cit(π̃

r
i ) = 1

)∑
i∈[n]

riφt(i, [n])
]
≥ τr −

ε

n
. (36)

Next, for any arbitrary τ ∈ { rmax

1+α
, rmax

(1+α)2
, . . . , ε

n
}, designate U (τ) to be the set of unranked products when

the algorithm lowers its threshold from (1 + α)τ to τ . For τ = rmax, we define U (τ) = [n] for completeness.

Then, for the given product i and any τ in the above range such that i ∈ U (τ), we can apply Lemma 6 to

infer that the following inequality holds with probability at least 1− δ
n2 .

Et
[
Pr
(
Ct(r

′− 1, π̃r
′

i )Cit(π̃
r′

i ) = 1
)∑
i∈[n]

riφt(i, [n])
]
≤ (1 +α)τ +

ε

n
, (37)
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where r′ is the rank at which product i did not meet the threshold of (1 + α)τ . In fact, since we assigned

product i to π̃ at rank r with threshold τr, we deduce that product i was not fixed at any rank prior to and

including r for a larger threshold of (1 +α)τr. As such, its empirical marginal revenue at that juncture (say

rank r′ ≤ r) could not have been larger than (1 +α)τr. By monotonicity, the same argument must hold for

rank r as well. Then, (37) holds20 with probability at least 1− δ
n2 for rank r′ = r and τ = τr.

Let E1 be the event that (36) holds for every position r ∈ [n] and threshold τr at which a product was

assigned to this position. Similarly, let E2 denote the event that (37) is true for every given τ , i′ ∈ U (τ).

Applying the union bound similarly as in the previous theorem, we can infer that Pr(E1 = 0∪E2 = 0)≤ δ,

as long as log1+α(rmax
n
ε
)≤ n.

For the rest of this proof we will consider the regime where our empirical estimates are close to their

expected values, i.e. we only consider rankings π̃ output by our algorithm such that E1 = 1 ∩E2 = 1. We

know that with probability 1− δ, our algorithm returns such a ranking. We aim to show that in this regime,

any ranking π̃ computed by our algorithm satisfies: E[Rt(π̃)]≥ 1
2+α

E[Rt(π
∗)]− ε.

Consider a fixed ranking π̃ returned by our algorithm that satisfies the conditions mentioned above. Our

first claim is that:

E[Rt(π
∗)]≤E[Rt(π̃)] +

n∑
r=1

Et
[
Pr
(
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗) = 1
)∑
i∈[n]

riφt(i, [n])
]

We prove this formally in Lemma 4 after this proof. Note that Ct(r− 1, π̃)Cπ∗−1(r)t(π
∗) is the event that

a random customer t does not click on any of the top r− 1 ranked products under π̃ but does indeed click

on the r-th ranked product under π∗. Proceeding from this point,

E[Rt(π
∗)]≤E[Rt(π̃)] +

n∑
r=1

Et
[
Pr
(
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗) = 1
)∑
i∈[n]

riφt(i, [n])
]

=E[Rt(π̃)] +

n∑
r=1

Et
[
Pr
(
Ct(r− 1, π̃)Cπ∗−1(r)t(π̃

r
π∗−1(r)) = 1

)∑
i∈[n]

riφt(i, [n])
]

≤E[Rt(π̃)] +

n∑
r=1

max
i′∈[n]

Et
[
Pr
(
Ct(r− 1, π̃)Ci′t(π̃

r
i′) = 1

)∑
i∈[n]

riφt(i, [n])
]

=E[Rt(π̃)] +

n∑
r=1

max
i′∈U(τr)

Et
[
Pr
(
Ct(r− 1, π̃)Ci′t(π̃

r
i′) = 1

)∑
i∈[n]

riφt(i, [n])
]

(38)

20 We note that inequality (37) trivially holds for any product i that was assigned to rank r for threshold τ = rmax

since the right hand side would be larger than rmax and the expected revenue from a customer cannot exceed this.
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≤E[Rt(π̃)] +

n∑
r=1

(
(1 +α)τr +

ε

n

)
. (39)

For (38), we replaced the set [n] by U (τr), the latter being a (superset) of the set of unassigned products

when the algorithm considers the rank r. Note that for all i′ /∈U τr , π̃(i′)< r and so, Ct(r−1, π̃)Ci′t(π̃
r
i′) = 0.

Finally, (39) comes from (37).

Now, suppose that Algorithm 4 returns a ranking π̃, with products assigned to ranks one through n′ <n.

In this case, we can once again apply (37) and infer that for all r > n′, (1+α)τr = τmin = ε
n

. We now continue

with (39):

E[Rt(π
∗)]≤E[Rt(π̃)] +

n∑
r=1

(
(1 +α)τr +

ε

n

)
=E[Rt(π̃)] +

n′∑
r=1

(1 +α)(τr) +

n∑
r=n′+1

(1 +α)(τr) + ε

=E[Rt(π̃)] +

n′∑
r=1

(1 +α)(τr) + (n−n′) ε
n

+ ε

≤E[Rt(π̃)] + (1 +α)

n′∑
r=1

Et
[
Pr
(
Ct(r− 1, π̃)Cit(π̃) = 1

)∑
i∈[n]

riφt(i, [n])
]

+
ε

n

+ (n−n′) ε
n

+ ε

(40)

≤E[Rt(π̃)] + (1 +α)E[Rt(π̃)] + (2 +α)ε (41)

where (40) follows similar logic as the proof of Theorem 4 and from an application of (36). This implies the

statement of the theorem. �

Lemma 4. Suppose that π∗ denotes the optimum revenue maximizing ranking and π̃ is the ranking returned

by Algorithm 4. Then, we have that:

E[Rt(π
∗)]≤E[Rt(π̃)] +

n∑
r=1

Et
[
Pr
(
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗) = 1
)∑
i∈[n]

riφt(i, [n])
]

Proof of Lemma 4 The proof uses ideas from the proof of Theorem 1, namely:

E[Rt(π
∗)] = Et

[ (
1−Ct(n,π

∗)
)∑
i∈[n]

riφt(i, [n])
]

≤Et
[ (

1−Ct(n,π
∗)Ct(n, π̃)

)∑
i∈[n]

riφt(i, [n])
]

=E[Rt(π̃)] +

n∑
r=1

Et
[
{
(
1−Ct(n, π̃)Ct(r,π

∗)
)
−
(
1−Ct(n, π̃)Ct(r− 1, π∗)

)
}
∑
i∈[n]

riφt(i, [n])
]
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=E[Rt(π̃)] +

n∑
r=1

Et
[(
Ct(n, π̃)Ct(r− 1, π∗)Cπ∗−1(r)t(π

∗)
)∑
i∈[n]

riφt(i, [n])
]

≤E[Rt(π̃)] +

n∑
r=1

Et
[
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗)
∑
i∈[n]

riφt(i, [n])
]

=E[Rt(π̃)] +

n∑
r=1

Et
[
Pr
(
Ct(r− 1, π̃)Cπ∗−1(r)t(π

∗) = 1
)∑
i∈[n]

riφt(i, [n])
]
. (42)

The final step comes from the fact that conditional on t, Ct(r − 1, π̃)Cπ∗−1(r)t(π
∗) ∈ {0,1}, and∑

i∈[n] riφt(i, [n]) is a constant. �

The following lemmas are used in the preceding proof of Theorem 5, and both their proofs follow from the

standard Hoeffding inequality when the random variables belong to an arbitrary range [a, b]. As such they

are generalizations of Lemmas 2 and 3.

Lemma 5. Suppose that X1,X2, . . . ,XL are independent samples of a random variable whose expectation

is given by X̃. As long as a≤ |Xj | ≤ b for all j ∈ [1,L], we have that:

Pr

(
L∑
j=1

Xj

L
− X̃ >

ε

n

)
≤ exp(−2L

ε2

n2(b− a)2
).

Lemma 6. Suppose that X1,X2, . . . ,XL are independent samples of a random variable whose expectation

is given by X̃. As long as a≤ |Xj | ≤ b for all j ∈ [1,L], we have that:

Pr

(
X̃ −

L∑
j=1

Xj

L
>
ε

n

)
≤ exp(−2L

ε2

n2(b− a)2
).

Appendix B: Extensions to Revenue Maximization

Our work is motivated by settings where customers exhibit hedonic browsing behavior (window shopping)

and products are not necessarily substitutable. As a result, we developed ranking policies for retailers to

maximize engagement by hooking customers during their first impression window. Implicit in this framework

is the notion that hooked customers provide considerable value to the retailer by means of further engagement,

which includes scrolling beyond their first impression window to peruse additional products. In this section,

we consider a natural extension to our model from Section 2 where the customer - upon getting hooked in

the first stage - follows a browsing pattern that culminates in the purchase of at most one product. Given

this two-stage model, we focus on the problem of revenue maximization and show how to adapt our learning-

to-rank algorithms to achieve similar guarantees for this new objective. One can similarly extend our work

to the objective of maximizing total clicks.
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Formally, in our extended model, each customer t is characterized by parameters21 (pt, kt,νt) ∼ D, and

each product i∈ [n] provides the retailer with a per-unit revenue (or profit) of ri upon sale. In the first stage,

the customer behaves exactly as outlined in Section 2, i.e., she browses the first kt ranks and clicks on a

product i with probability pit. Conditional upon clicking at least one product within her first impression

window and getting hooked, the customer - in the second stage of our extended model - peruses all of the

products and purchases product i ∈ [n] with probability given by a logit model with parameters νt, i.e.,

φt(i, [n]) = exp( νit
ν0t+

∑
j∈[n] νjt

). Here, νit is a measure of the expected utility that customer t derives from

purchasing product i. We let ν0t be the utility the customer derives from the outside or “no purchase” option,

and φt(∅, [n]) = exp( ν0t
ν0t+

∑
j∈[n] νjt

) is the probability with which the customer does not purchase any of the

products.

Our setup allows for heterogeneity in the underlying choice model as the parameters νt are type-dependent.

We make no specific assumptions on νt although in practice, one would expect these parameters to be

correlated with the initial click probabilities pt. Finally, the above model is more applicable to situations

where the products are closely related (or substitutes) and hence, the customer purchases at most one of

them.

At first glance, it would appear that our model is similar to the consider-then-choose models and other

two-stage models recently studied in the assortment literature (Derakhshan et al. 2020, Aouad et al. 2015,

2019). Furthermore, Aouad et al. (2019) also consider a model where the customer’s click probabilities are

independent of the parameter that represents her MNL-based preference weights. However, as we describe in

Section 2.1, there is a fundamental difference in consumer shopping intention and behavior between our model

and other two-stage models, which leads to a divergence in technical challenges and relevant applications.

Namely, our customer is unaware of the product assortment prior to shopping and thus the first stage is

primarily aimed at hooking the customer, whereas in other two-stage models in the literature, customers are

already hooked and the first stage is aimed at narrowing down the set of products the customer will consider

for purchase. Therefore we study customers who, upon getting hooked, consider all of the products in the

assortment during the second stage. Specifically, this includes the products that they did not click on in the

first stage. Since the first stage centers around customers deciding whether or not to engage with the event

21 For simplicity, we assume that the bias function fit(χ) = 0 for all χ⊆ [n] although these results carry over even if

fit(χ) can alter the click probabilities.
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itself, it is possible for customers to return to products (that they did not click on) once they have decided

to engage with the event. For example, customers might revisit a product that was not clicked on if they are

considering purchasing a similar product. Moreover, our model also permits cases where νit is small when

the underlying click probability pit is small, i.e., the customer is less likely to purchase a product which has

a small click probability.

Given our focus on learning, we naturally assume that the retailer has no knowledge of the distribution

D from which the parameters (pt, kt,νt) are drawn. We then focus on developing online learning policies for

maximizing the retailer’s total expected revenue,

max
π1,π2,...,πT

E
[∑
t∈T

Rt(πt)
]
, (43)

where the revenue earned from customer t is

Rt(π) =Ht(π)
∑
i∈[n]

riφt(i, [n]), (44)

and the expectation over all customer types can be expressed as

E[Rt(π)] = E(pt,kt,νt)

(1− kt∏
j=1

(1− pπ−1(j)t)
)∑
i∈[n]

riexp(
νit

ν0t +
∑

j∈[n] νjt
)

 . (45)

From the above expression, it is clear that the ranking can significantly impact the retailer’s revenue in

the second stage: since only hooked customers proceed to purchase a product, selecting a suitable ranking

increases the probability that the customer makes a purchase. At the same time, maximizing the probability

that an incoming customer gets hooked does not imply revenue maximization because - conditional on getting

hooked - the revenue generated is not equal for all customer types. We note that for a fixed customer profile

(pt, kt,νt)∼D, the expected revenue conditional on getting hooked,
∑

i∈[n] riexp( νit
ν0t+

∑
j∈[n] νjt

) is a constant

that depends only on the type parameters. Therefore, the revenue maximization problem is equivalent to a

weighted version of OnAR where the weight for a given customer type is its expected revenue.

We next present the Threshold Acceptance Algorithm for Revenue Maximization (Algorithm 4) as an

adaptation of the Threshold Acceptance Algorithm (Algorithm 3) presented in Section 4.2. There are two

key differences between Algorithms 3 and 4. First, Algorithm 4 defines ∆ir to be the marginal revenue from

customers who get hooked - as opposed to the marginal fraction of customers who get hooked - by first clicking

on product i at rank r. Second, to empirically estimate ∆ir in Algorithm 4, we display a certain ranking to

L= r2max
n2

ε2
log( n√

δ
) customers, as opposed to L= n2

ε2
log( n√

δ
) customers in Algorithm 3; the increased number
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Algorithm 4: Threshold Acceptance Algorithm for Revenue Maximization

Input: Parameters ε, δ,α > 0, Initial and Final Thresholds: τmax ≥ τmin > 0;

Initialize null ranking π̃(i) = ∅ for all 1≤ i≤ n, and initialize τ = τmax;

Initialize unranked products U = [n], CurrentRank= 1;

while τ ≥ τmin and CurrentRank≤ n do

for i∈U do

Define π̃ri for r=CurrentRank such that;

a) π̃ri is identical to π̃ in positions 1, ..., r− 1;

b) π̃ri (i) = r;

c) Products in U \ {i} are arbitrarily assigned to positions j > r;

Display ranking π̃ri to L= n2r2max
ε2

log( n√
δ
) customers, where rmax = maxi∈[n] ri;

Let Sir be the total revenue from customers whose first click is product i;

Define ∆ir = Sir
L

;

if ∆ir ≥ τ then

Set π̃(i)←CurrentRank;

U ←U \ i, CurrentRank←CurrentRank+ 1;

end

end

τ ← τ
1+α

;

end

of sampled customers for each candidate ranking - and the length of the overall learning phase - stems from

the fact that the (random) revenue exhibits greater variance over a larger range, i.e., Rt(π)∈ [0, rmax].

The following result shows that Algorithm 4 achieves a similar approximation guarantee as Algorithm 3

for the revenue maximization objective.
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Theorem 5. The Threshold Acceptance Algorithm for Revenue Maximization (Algorithm 4) with τmax =

rmax = maxi∈[n] ri and τmin = ε
n

returns a ranking π̃ such that with probability 1− δ

E[Rt(π̃)]≥ 1

2 +α
E[Rt(π

∗)]− ε,

where π∗ is the optimal solution to the offline revenue maximization problem. For any α > 0, the length of

the learning phase is O
(
r2max

n3

ε2
log1+α(nrmax

ε
) log( n√

δ
)
)

.

We present the proof in Appendix A and note that all other algorithms and corresponding performance

guarantees for both the online and offline settings can similarly be extended to the revenue maximization

objective. We note that instead of focusing on revenue, one could alternatively maximize the total number

of clicks by formulating an analogous two-stage model where hooked customers click on multiple products

across the assortment in the second stage. Given the similarities between the two models, it is possible to

adapt our algorithms and analysis to derive comparable results for this objective of maximizing total clicks.

Appendix C: Sensitivity Analysis for Simulations

In this appendix, we perform sensitivity analysis on the default parameter set (recommended by Wayfair)

that we used to generate customer preference vectors from observed clickstream data, as well as on the

number of customers to offer each ranking during the learning phase (i.e. sample size, L); all results in this

appendix pertain to the Threshold Acceptance Algorithm as implemented in Section 5. First, we varied

the percent of customers with non-zero preferences between 70-90% (specifically, {70%, 80%, 90%} - recall

that the main results presented are for 80%). Figure 5 presents our sensitivity analysis on the percent of

customers with non-zero preferences. The analysis illustrates that our results are robust to this parameter

choice, and in most cases, that our algorithm performs marginally better as the percent of customers with

non-zero preferences increases. Intuitively, when there are more customers with non-zero preferences, our

algorithm has more opportunity to hook additional customers compared to Wayfair’s ranking where the

number of hooked customers is fixed. In reality, it is impossible to know the percent of customers with

non-zero preferences, and our results show that over a reasonable and wide parameter range, our algorithm

still attains significant performance improvement over Wayfair’s ranking.

Second, we varied the percent of customers who view all n products between 2.5-10% (specifically, {2.5%,

5%, 7.5%, 10%} - recall that the main results presented are for 5%). When the percent of customers who

view all products was 2.5% or 10%, we were unable to find a power law distribution to generate customers
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Figure 5 Sensitivity Analysis on Percent of Customers with Non-Zero Preferences

Figure 6 Sensitivity Analysis on Percent of Customers Who View All Products

that recovered the actual clickstream data for some of the events, i.e. we could not find matches between

actual and simulated clicks as we did in Figure 2; thus, these parameter values are likely unrealistic. Figure 6

presents our sensitivity analysis on the percent of customers who view all products. The analysis illustrates

that our results are robust to this parameter choice. In reality, it is impossible to know the percent of

customers who view all products, and our results show that over a reasonable parameter range, our algorithm

still attains significant performance improvement over Wayfair’s ranking.
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Figure 7 Sensitivity Analysis on Sample Size, L

Third, we varied the number of customers for which to offer each rank (L) during the learning phase

such that L ∈ [100,1000], allowing us to evaluate the tradeoff between faster vs. more accurate learning.

Figure 7 illustrates that when the sample size is small, there is insufficient learning and the algorithm’s

performance suffers. As the sample size increases up to approximately 400 or 500 customers, the algorithm

is able to sufficiently learn the (approximate) best ranking. For the smallest event (A), we see evidence that

as the sample size grows too large, the algorithm is unable to learn fast enough to reap the benefits of more

precise learning. Interestingly, we see that for all but the smallest event, the performance of our algorithm

is remarkably constant for a wide range of sample sizes. This is a desirable artifact since Wayfair can simply

choose a single sample size for the algorithm’s implementation across all events - likely L = 400 or 500 -

without having to estimate the event size T a priori.
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Appendix D: Inferring Customer Behavior from Click Data

In Section 5 of the main paper, we presented a new methodology for using the clickstream data to learn

the distribution D of customer preferences and first impression windows. This methodology relied on the

customer behavior model introduced in Section 2 (e.g. customers who are not hooked within their first

impression window exit the event) and additional assumptions, e.g., hooked customers go on to view the

entire assortment. Putting aside the data, we then generated customers from the inferred distribution and

simulated their behavior on the ranking that Wayfair had used for the original event. Assuming that the

customers follow the model in Section 2, we then compared the fraction of customers who click on each

product in the simulated models to that of the true data, taking into account the entire dataset. The close

fit between the simulated and actual distributions that we see in Figure 2 indicates that our model is a good

predictor of customer behavior on actual events.

In this Appendix, we further examine the predictive power of our customer behavior model as well as others

proposed in the literature. First, we present an out-of-sample fit, wherein we learn the customer preference

distribution D using a fraction (70%) of the clickstream data and compare the click profile of customers

generated from this distribution to the true clicks from the remaining 30% of the customers (holdout data).

This serves as a contrast to the methodology leading to Figure 2 in Section 5.2, which could be interpreted

as an in-sample fit since all of the customer data was utilized to learn the distribution D and the simulated

clicks were compared to the true clicks arising from the entire dataset. Our goal in Section 5.2 was to re-

create customer profiles in a manner that is consistent with Wayfair’s actual events to generate the most

realistic customers to test our algorithms; thus we opted to utilize all of the data in doing so. Here in this

Appendix, our goal is to show the effectiveness of our customer profile inference process and thus we use a

70/30 train/test split to evaluate its accuracy on a holdout sample.

Second, we investigate whether some of the other models from the literature (see Sections 1.1 and 2.1)

could explain the observed click data for the six Wayfair events. We consider the cascade model (Kveton

et al. 2015a) - single customer type with regards to intrinsic click probabilities, uniform first impression

window k, no bias - and position-based model (Lagrée et al. 2016) - single customer type with regards to

intrinsic click probabilities, variable first impression window kt, no bias. We devise a simple methodology

for deriving model parameters that best explain the observed data for each of these models and show the

resulting fit would lead to large errors. We also rule out frameworks where customer clicks follow a choice
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model (e.g., consider-then-choose models) by providing evidence that the products in Wayfair’s events tend

to be diverse rather than substitutable.

Taken together, the results in this appendix strongly suggest that while our framework is able to suitably

explain customer clicks even using out-of-sample data, other models studied in the literature do not fully

account for all facets of the observed customer behavior.

D.1. Out-of-Sample Model Fit

Since the methodology used to derive the out-of-sample model comparison is very similar to that used to

obtain the in-sample plot in Section 5.2, we simply highlight the key differences and the main parameter

choices. Recall that T denotes the entire click data for any one of the events. We infer the model parameters

and compare against the out-of-sample data as follows:

1. Data Split: Randomly split T into training data T train and test data T test such that |T train|= 0.7|T |

and |T test|= 0.3|T |.

2. Conditional Inference Process: Assume that the first impression windows follow a power-law distri-

bution, i.e., Pr(kt = r) = 0.95 ar−b∑n−1
l=1

al−b
∀r= 1, ..., n−1 and that Pr(kt = n) = 0.05. For any given distribution

of first impression windows Dk, learn the distribution Dp of interest probabilities using the exact same

procedure outlined in Section 5.2 but using only the data in T train for the inference process.

3. Minimizing Error: Optimize for Dp and Dk in order to minimize the error in the percentage of

customers hooked - upon viewing Wayfair’s ranking - between the training data and the inferred distribution.

The fraction of customers hooked due to the inferred distribution can be estimated by sampling |T train|

customers with preferences drawn from Dp and first impression windows from Dk, and identifying the subset

of the sampled customers who would get hooked when exposed to Wayfair’s original ranking.

4. Compare against Test Data: Sample |T test| customers from Dp, Dk, simulate their response when

exposed to Wayfair’s Ranking and calculate the fraction of simulated users who click on each individual

product in the assortment. Repeat Step 4 one hundred times to help eliminate noise in individual draws from

the inferred distributions Dp,Dk. Compare to the fraction of customers in T test who click on each product.

Figure 8 compares the click probability for each product in the test data versus those of the simulated

customers (averaged over 100 simulations) for each of the six events. For the vast majority of products across

the six events, the simulated and actual click probabilities are very similar. This highlights the effectiveness



Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products
Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!) 75

Figure 8 Actual and simulated relative click probabilities for six events, where “actual clicks” are based on the

test data and “simulated clicks” are from a model whose parameters were inferred using the training data. The

click probabilities are normalized in each event for confidentiality so that the maximum click probability of any

product is one.

of our customer profile inference process used in Section 5.2 and provides further evidence that our model

proposed in Section 2 is a good predictor of customer behavior on actual events. Finally, we observe from

Figure 8 that our learned models incur marginally smaller error for events D,E, and F - i.e., when compared

to events A,B, and C, the simulated customer profiles for these events are a better fit to the true click

probabilities. This is fundamentally an artefact of the size of the test dataset since the events are labeled in

increasing order of their population (event A has the highest error and smallest test data, and so on).

D.2. Fitting Data to Other Models

In the following subsections, we investigate whether the cascade model, position-based models, and choice

models could explain the observed click data for the six Wayfair events.

D.2.1. Cascade Models: We analyze whether the popular cascade model studied in the literature (e.g.,

Kveton et al. (2015a) and citations therein) suitably captures customer behavior in the six Wayfair events.
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The cascade model is a special case of the more general framework proposed in Section 2, wherein there

is only a single customer type with a fixed but unknown set of click probabilities for each item, a known

first impression window k identical for all customers, and fit(χ) = 0 for all i, t and χ ⊆ [n]; to be specific,

every customer t has the same vector of click probabilities over the products p= (p1, p2, . . . , pn) and views

the exact same number of products k ∈ [1,48] during her first inspection of the event. As with our model, if

the customer clicks on at least one of the first k products, we assume that they are hooked; otherwise they

exit the event. Our goal in this section is to fit the clickstream data from the six Wayfair events to a cascade

model by identifying the parameters (p, k) that best explain the data. Following this, we evaluate the fit

quality by looking at two metrics of interest when customers are exposed to Wayfair’s actual ranking - (i)

the fraction of customers hooked, and (ii) the fraction of customers who click on each product.

We begin by pointing out that there are two particular approaches in which one could fit a cascade model

to our dataset. First, the clickstream data shows us that a non-trivial fraction of the customers’ first click

corresponds to each of the top-48 ranked products. In the face of this observation, it seems reasonable to

deduce that the only possible value of the first impression window k that fully explains the data is k= 48. For

the second approach, since fewer customers click on products in later ranks, one could alternatively assume

that the first impression window k < 48, and any clicks on later products stem from hooked customers; note

that this approach cannot fully explain the data since some customers first click on a product after rank

k for any k < 48, i.e., their first impression window must have been more than k. For each of these two

approaches, we develop an inference methodology and test whether a cascade model suitably predicts the

observed customer behavior in our clickstream data.

Cascade model with k = 48: Fixing the first impression window to k = 48, our goal here is to identify

the click probabilities for each product, p= (p1, p2, . . . , pn), that best explain the clickstream data. Since all

customers look at all of the products in the assortment when k= 48, we can infer that for any given product,

its click probability should match its empirical click probability in the data. Formally, for product i, the

most likely value of its click probability is given by:

pi ,
Number of customers who click on product i

Total number of customers (|T |)
. (46)

In simple terms, this is the only value of pi that ensures that the (expected) fraction of customers who

click on product i in our simulated instances matches the true fraction observed in the data. Note that this

definition leverages the cascade model’s assumption that customers’ clicks across products are independent.
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Fit Accuracy: Cascade Model, k= 48

Event ID Error in %Hooked

A 58.0%

B 59.1%

C 56.6%

D 48.7%

E 52.3%

F 74.4%

Table 3 Error in percentage of hooked customers when customers are generated based on a cascade model

with k= 48 inferred from the click data. Error is computed as %Hooked in Simulations−Actual %Hooked
Actual %Hooked .

To evaluate the fit accuracy of this model for each of the six events, we generate |T | customers using the

inferred click probabilities from (46), and we examine the fraction of generated customers that would be

hooked by Wayfair’s ranking vs. the actual fraction of customers hooked; results are presented in Table 3.

For each of the six events, the simulated customers generated using the inferred click probabilities become

hooked at a significantly higher rate than the actual customers in the event - in fact, over 50% more customers

are hooked in the simulations. This observation provides a strong case for customers having first impression

windows smaller than the length of the entire assortment, but also heterogeneous window sizes to account

for those whose first click occurs at a later rank. Overall, the large error rate in the percentage of hooked

customers leads us to conclude that cascade models where customers view the entire assortment do not

accurately reflect customer behavior in our dataset.

Cascade model with best-fit k (k ∈ [1,48]): Although the cascade model with k= 48 provided a near-

perfect fit for the fraction of customers who click on each product, it led to very large errors in terms of

the percent of customers hooked. Thus, we next seek to jointly learn both the click probabilities p and

first impression window k so that the fraction of hooked customers in our simulations matches the fraction

hooked in the dataset. Our inference process consists of two steps. First, we iterate over all values of the first

impression window k in the range [1,48]. Second, upon fixing a value of k for each event, we compute the

vector p(k) that achieves the best possible fit for the observed click distribution across products, conditional

on the first impression window being k. Finally, for each of the forty-eight (p(k), k) pairs that we inferred for

each event, we simulate |T | customers with these parameters and estimate the fraction who would have been

hooked by Wayfair’s ranking. We then select the parameters (p(k), k) for each event such that the fraction

hooked is closest to the value of this metric in the actual data.
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Finally, we touch upon our approach for setting the probabilities p(k) for a fixed value of k. Since all

customers view the first k ranked products, we can choose the click probabilities for these products exactly

as we did for the k = 48 case. That is, for all products i such that their position under Wayfair’s ranking

is smaller than or equal to k, its probability p
(k)
i ,

Number of customers who click on product i
Total number of customers(|T |) . For any product i

whose position in Wayfair’s ranking is strictly greater than k, its click probability is simply its empirical

click probability among hooked customers, i.e. those who clicked on a product at or before rank k and thus

browsed product i:

p
(k)
i ,

Number of hooked customers who click on product i

Total number of hooked customers

The above formula also implicitly assumes that once a customer is hooked, they go on to view all 48 products,

consistent with our simplifying assumption in Section 5.

Table 4 presents the value of the first impression window k that minimizes the error in the percentage of

hooked customers, along with a relative measure of this error, for each of the six events under consideration.

Given that we tune the first impression window k to minimize the error in the percentage of hooked customers,

it is not surprising that this model achieves a close fit with the original data for k < 48. That said, when

we look at the fraction of simulated customers who click on each product i and compare with the actual

fraction of customers who click on each product, we see that for every product i that is ranked beyond the

customers’ first impression window k, the fraction of customers who click on this product in our simulations

is significantly (by 10−50%) smaller than the true clicks received by this product (Figure 9). This poor fit in

the click profile beyond the first impression window is consistent across all six events. As we argued earlier,

this mismatch stems from the heterogeneity in preferences, and the fact that many customers do have large

first impression windows (e.g., k > 40), which are not captured by the best-fit cascade model.

To conclude, we presented two methods for fitting our data to a cascade model. When we assume k= 48

in order to attain per-product click probabilities that match the original customers, the generated customers

are hooked at a significantly higher rate compared to the actual data. While lowering the first impression

window resolves this issue, the resulting click probabilities for products beyond the first impression window

no longer match their true values. Compared to this, our model in Section 2 achieves a close-fit, both in

terms of the fraction of customers hooked, and the individual click probabilities across all 48 products. Thus

we conclude that our customer behavior model is a better fit for the actual data than the cascade model.
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Fit Accuracy: Cascade Model with Best-Fit k

Event ID Error in %Hooked First Impression Window (k)

A 0.9% 23

B 1.1% 19

C 1.4% 23

D 1.0% 24

E 0.7% 21

F 1.0% 13

Table 4 Error in percentage of hooked customers when customers are generated based on a cascade model

with best-fit k inferred from the click data. The first impression window is chosen to minimize error, which is

computed as
∣∣%Hooked in Simulations−Actual %Hooked

Actual %Hooked

∣∣.

Figure 9 Actual and simulated relative click probabilities for all six events when the customers are generated

from a best-fit cascade model with k ∈ [1,48]. The click probabilities are normalized for confidentiality in each

event so that the maximum click probability of any product is one.

D.2.2. Position-Based Models: Given that cascade models do not fully capture the heterogeneity in

first impression windows, it is natural to consider whether a position-based model as in Lagrée et al. (2016)

can fully predict the customer behavior in our data. Formally, position-based models are a special case of
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our more general model in Section 2 - in the former, all customers have the same click probabilities, their

first impression window is drawn from an independent distribution, and there are no bias functions. In this

section, we devise a methodology for inferring the parameters of a position-based model, namely the click

probabilities p and distribution Dk from which the first impression windows are drawn. Following this, we

generate customers with these preferences and compare the percentage hooked and the click profile across

the assortment to Wayfair’s data, as we had done for the cascade model.

The methodology used to fit the data to a position-based model is somewhat similar to the more general

inference framework that we developed in Section 5 but accounting for a single customer type (with regards

to intrinsic click probabilities). Suppose that the products are labeled in the order of their position in

Wayfair’s static ranking πWF , and so πWF (i) = i for all i ∈ [1,48]. We begin with the assumption that

the first impression windows are drawn from a power law distribution Dk, i.e., Pr(kt = r) ∝ ar−b for all

r ∈ [1,47] and tune parameters (a, b). In addition, we assume that a small fraction of the customers view the

entire assortment (i.e., have kt = 48). Both these assumptions ensure consistency with our simulations in the

main paper. Similar to our methodology in Section 5, we begin by guessing the distribution Dk for the first

impression windows - i.e., initial parameters (a, b). Since all customers view the first ranked product (kt ≥ 1

for all t), its click probability is equal to its empirical click probability, i.e., the fraction of customers in the

data who click on the product at the first position. For every other product i, we set its click probability as

follows:

pi ,
Number of customers who click on product i and product 1

Total number of customers who click on product 1
. (47)

The above formula for the click probabilities stems from the notion that in position-based models, cus-

tomers’ clicks on different products are independent of each other. Therefore, the fraction of customers who

click on product i conditional upon clicking on the top-ranked product must equal the overall fraction of

customers who would click on product i if they were to view it. Using data only from customers who click on

the top-ranked product ensures that we are only considering customers who are guaranteed to have viewed

product i > 1. This relies on the assumption that we made in Section 5, namely that hooked customers view

all of the products in the assortment.

For the given set of parameters (p,Dk), we then generate customers and compute the fraction that would

be hooked if exposed to Wayfair’s ranking. Finally, as in Section 5, we tune the parameters of the power law
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distribution (a, b) to minimize the error (between the generated customers and dataset) in the fraction of

hooked customers.

We now discuss the accuracy of the fit and the predictive power of position-based models for the same two

metrics used previously. First, we note that our methodology is able to achieve a close fit to the original data

in terms of the percentage of customers hooked. As is the case with our results in Section 5, this in itself is

not particularly surprising given the degrees of freedom available to us in setting the power law parameters.

Therefore, we focus mainly on the clicks generated by the simulated customers. Figure 10 compares the

fraction of generated customers who click on each individual product to the true fraction in the underlying

data. Looking at the plot, we see that the customers generated from a position-based model are significantly

more likely to click on products in positions [2,10] than the actual customers. This large mismatch in the

click probabilities is also consistent across all six events. On the other hand, for products that are ranked

beyond position ten, the simulated clicks reasonably match the actual click probabilities. In light of our

inference method (see Equation (47)), we argue that customers who click on the top-ranked product are

much more likely to click on (say) the second or third ranked products than an average customer. Further,

upon examining the clickstream data, we verify that this holds independent of the distribution used for the

first impression windows. These findings provide a strong argument in favor of modeling multiple customer

types, and against independence in clicks, a common assumption in much of the literature. Indeed, our

model in Section 2 is able to accurately mirror the click probabilities across all products, as can be seen in

Figure 2. Finally, Figure 10 gives the impression that more customers are hooked in our simulations than

in the underlying dataset. This however, is not true; the additional clicks by the customers generated from

the position-based model stems from the fact that these simulated customers tend to click on more products

once they are hooked.

In summary, even though position-based models allow for heterogeneity in first impression windows, our

findings indicate that having only one customer type (with regards to intrinsic click probabilities) is not

sufficient to capture the rich behavioral patterns exhibited by customers who view Wayfair’s events. We

believe that this finding would generalize to many other settings where the products are not substitutable

and customers exhibit hedonic browsing behavior. It is worth noting that for both the cascade and position-

based models, the optimal ranking is a popularity ranking, which is certainly not the case for Wayfair’s

events as can be gleaned from our results in Section 5.
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Figure 10 Actual and simulated relative click probabilities for all six events when the customers are generated

from a best-fit position-based model with first impression windows drawn from a power law distribution. The click

probabilities are normalized for confidentiality in each event so that the maximum click probability of any product

is one.

D.2.3. Choice Models: Choice models are commonly used as customer behavior models in much of the

operations management and marketing literatures, including many papers in the product ranking literature

(Table 1). By construction, choice models assume that each customer chooses at most one product from a set

of substitutable products offered by the retailer. Here, we illustrate that the assortment of products offered

in each of Wayfair’s six events cannot be considered substitutes, as one way to illustrate that choice models

are not appropriate in this setting.

Table 5 displays the number of product categories that were offered in each event; each product category

represents a set of products that Wayfair’s merchandising team considers to be substitutable, at least from a

functional perspective22 (e.g., floor lamps and ceiling lights could constitute two separate product categories

22 We note that the delineation of sets of substitutable products likely extends beyond simply a functional perspective,

but nonetheless this is a reasonable proxy for understanding whether or not the products in an event are substitutable.



Ferreira, Parthasarathy, and Sekar: Learning to Rank an Assortment of Products
Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!) 83

Event A B C D E F

Number of product categories offered 29 12 25 15 18 5

Table 5 Number of Product Categories Offered in Each Event

in one of the events). Given the large number of categories offered in most events, it is clear that products

offered in an event cannot be considered substitutes and thus choice models would not accurately represent

customer shopping behavior in our setting.

Appendix E: Additional Simulations: Finite Customer Types

In Section 5, we presented our main empirical results, where we evaluated the performance of our Simple

Learning and Threshold Acceptance Algorithms on customer preferences inferred based on actual clickstream

data from six distinct events. Despite the rather conservative assumptions made in that section, we observed

that our proposed algorithms outperformed the default static ranking employed by Wayfair by moderate

amounts (average improvement between 5 and 30%; refer to Figure 3). In this section, we adopt an alternative

and less-conservative methodology where we assume that customers belong to a finite number of types and

use the clickstream data to infer the types and the probability that an incoming customer belongs to each

of these types. We then use the derived customer preference distribution to estimate the performance of

our Threshold Acceptance Algorithm23 in comparison to Wayfair’s static ranking as well as the omniscient

offline benchmark as defined earlier (the static ranking output by the Greedy Algorithm for OffAR, πg).

We begin by highlighting a few of the restrictive assumptions from Section 5 below and outline our

reasoning for relaxing these assumptions. Following this, we present the technical details surrounding the

implementation. A comprehensive description of our partner Wayfair, customer behavior on the site, char-

acteristics of the six stylistically-themed events that were chosen for these simulations, and the clickstream

data can be found in Section 5.1, and we avoid repeating these details here.

In the process of learning customer preferences and first impression windows from the clickstream data, our

implementation in Section 5 required the following behavioral assumptions. First, our inference was based

on the premise that once a customer was hooked, she views all 48 products in the event. Consequently, each

23 The performance of our Simple Learning Algorithm is very similar to that of the Threshold Acceptance Algorithm

in Section 5, so we have omitted for brevity.
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unique click vector was taken to represent a distinct customer type;24 this resulted in each event catering to

anywhere between 3500 and 14000 customer types. Second, the customer interest probabilities were assumed

to be independent of their first impression windows. Third, for each customer t and product i, we had only

integral click probabilities, i.e., pit ∈ {0,1}. These assumptions are somewhat conservative as they tend to

be inimical to the performance of our algorithm. For example, the premise that hooked customers view all

48 products severely limits the customer’s response to any alternative ranking as the customer is assumed

to not be interested in any product that she did not click on.

In the following simulations, we make a different set of assumptions regarding customer interests and

behavior and similarly compare our algorithm to Wayfair’s static ranking and offline benchmark:

• As in Section 5, we assume that ft(χ) = 0 for all t.

• We suppose that there is a finite set Z of customer types, where each type z ∈Z is specified by its param-

eters (p(z),D(z)
k , q(z)). Crucially, the distribution of customer first impression windows is not independent of

product interest. This is a natural consideration in e-commerce domains, e.g., the demographics of customers

may skew both their product preferences and their first impression windows. Finally, we assume that the

average number of products per type that a customer has non-zero interest in is two. Mathematically, we

have:

1

|Z|
∑
z∈Z

∑
i∈[n]

1{p(z)i > 0}= 2,

where 1{} is the indicator variable that is one if the condition inside is true and zero otherwise. Note that

some types may have only one product and others may have many.

• There exists a customer click probability parameter p ∈ (0,1) such that pit ∈ {0, p} for all customers

t and products i ∈ [1, n]. A simple interpretation for this parameter is that a customer t who is interested

in a product i that falls within her first impression window only clicks on this product with some finite

probability p and does not click on this product with probability 1− p.

• Customer t only clicks on products displayed in ranks [1, kt], regardless of whether or not they are

hooked. This assumption is in contrast with the one made in Section 5 that hooked customers browse and

24 Formally, a preference distribution D can be partitioned into mutually exclusive customer types, where each type z

is characterized by an interest probability vector p(z), first impression window distribution D(z)
k and a type probability

q(z). An incoming customer t belongs to type z with probability q(z) and conditional upon her type being z, her click

vector is pt = p(z) and first impression window kt is drawn independently from D(z)
k .
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can click on products in the entire assortment. In reality, customer behavior and the performance of our

algorithm may fall somewhere in-between.

E.1. Implementation

In Section 5, the primary difficulty in the inference process was to identify the (censored) interest probability

vector pt for customers who did not click on any product by assigning them to one of the click vectors

corresponding to the hooked customers. Here, the challenge is two-fold: first, we need to infer a representative

set of customer types including their preferences and first impression windows; second, we need to assign

each of the customers to one of the types based on the observed click vector. Once again, the second part is

compounded by the censored nature of the observations for all customers (hooked or otherwise).

We now outline the methodology used for constructing the empirical distribution D̂ of customer types

based on the clickstream data. Where it is applicable, we use the same notation introduced in Section 5, e.g.,

ct represents the click vector for customer t, T̃c and T̃ are the customers with non-zero clicks and non-zero

preference vectors respectively, and so on. To reiterate, our goal is to use the set of customer click vectors

(ct)t∈T to construct the customer types that make up the distribution D̂, i.e., (p(z),D(z)
k , q(z))z∈Z .

1. Fixing parameters a priori : As we did in Section 5, we assume that the total number of customers with

non-zero preferences |T̃ | is fixed, as is the customer click probability parameter p and the number of types

|Z|. We will vary the parameter p within an appropriate range to recover the customer types that best fit

the observed click data. The exact choice or range of the other parameters is discussed subsequently.

2. Clustering to partition click vectors into types: We identify a subset of the customers in T̃c who clicked

on two or more products (
∑

i∈[n] cit > 1) and run a standard k-means++ (Arthur and Vassilvitskii 2007)

algorithm to cluster these click vectors into |Z| partitions.

3. Identifying representative set of interest vectors (p(z))z∈Z : We extract the centroids of each cluster

(C(z))z∈Z , which are fractional and tend to be overly dispersed as each centroid has non-zero entries corre-

sponding to many products. Thus, we take each product i∈ [n] and assign it to the w clusters corresponding

to the w largest values in (C
(z)
i )z∈Z . Therefore, p

(z)
i = p if z is one of the top-w clusters for product i∈ [n] as

per the centroid, and p
(z)
i = 0 otherwise. Finally, the parameter w is chosen in order to satisfy our assumption

that the average number of products that a customer type is interested in is two, i.e., w= 2|Z|
48

.

4. Assigning customers (click vectors) to types: Now that we have derived the interest vectors p(z) for each

type, we need to infer the first impression window distributions as well as type probabilities. As a first step,
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we take each click vector belonging to the customers in T̃c and assign it to one of the types using a maximum

likelihood technique. Specifically, consider a click vector ct and let rt denote the position of the largest ranked

product that the customer clicks on. For every type z ∈ Z, customer t ∈ T̃c, and product i ∈ [rt], we define

a probabilistic score s
(z)
it as follows: (i) s

(z)
it = p if cit, p

(z)
i > 0; (ii) s

(z)
it = 1− p if p

(z)
i > 0 = cit; (iii) s

(z)
it = η

if p
(z)
i = 0< cit and (iv) s

(z)
it = 1 if p

(z)
i = cit = 0. In the above definition η <min{p,1− p} is a penalty term

corresponding to the case where a customer clicks on a product that a type is not interested in. The type

z(t) that a customer t is assigned to is the solution to the following expression that captures the likelihood

of belonging to each type given the observed click vector ct:

z(t) = arg max
z∈Z

rt∏
i=1

s
(z)
it . (48)

5. Joint, iterated Bayesian inference of first impression windows and type probabilities: We use an iterative

approach that starts with an initial assumption (uniform distribution) on the first impression windows and

type probabilities and jointly and iteratively updates both of these parameters until the process converges.

Specifically, suppose that (D̂(z)
k , q̂(z))z∈Z are the current estimates for the corresponding distributions in a

given iteration. We use the following two steps to update these parameters:

• For every t ∈ T̃c, we identify z(t) as per (48). For the customers who did not click on any product but

have non-zero preferences (t ∈ T̃ \ T̃c) we randomly assign them to a type z(t) ∈ Z using Bayes rule, which

in turn is dependent on (D̂(z)
k , q̂(z)):

Pr(z(t) = z|ct = 0) =
q̂(z)

|T̃ \T̃c|
T̃

∑
k∈[n]

Pr(ct = 0|p(z), kt = k)Pr(kt = k|D̂(z)
k ).

Once every customer t is assigned to a type z(t), we can update q̂(z) to be the fraction of customers assigned

to type z.

• Given z ∈Z, for every customer t∈ T̃ such that z(t) = z, we compute the probability that the customer’s

first impression window is k given her type z. That is for all k≥ rt, we can use the (conditional) distribution

D̂(z)
k to infer the probability that her first impression window is kt = k subject to k≥ rt, where rt is the rank

of the last product that the customer clicked on (rt = 0 if t∈ T̃ \ T̃c).

Pr(kt = k|z(t) = z, k≥ rt) =
Pr(kt = k|D̂(z)

k )∑n

r=rt
Pr(kt = r|D̂(z)

k )
.

Finally, we can update the distribution D̂(z)
k by aggregating the probability that Pr(kt = k|z(t) = z) over all

k ∈ [n] and all t such that z(t) = z.

We terminate the iterative process when the root mean square errors of the values of both D̂(z)
k and q̂(z)

between successive rounds are smaller than a specified tolerance level
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Parameter Choices First, we assume that 70% of the customers have non-zero preference vectors, i.e.,

|T̃ |
|T | = 0.7. This reflects a conservative modeling choice that is at the lower end of the range of this parameter

that we analyzed in Appendix C. By assuming that 30% of the customers cannot be hooked by any ranking,

we seek to compensate for our other, less conservative assumptions. Second, for the rest of this section, we fix

the number of customer types or clusters to be |Z|= 75; we tested and found similar results for other values

such as |Z|= {25,50,100} but present only |Z|= 75 for brevity. This is in stark contrast to the experiments

in Section 5 with thousands of types and only a handful of customers per type. Finally, we assume that the

customer click probability p∈ [0.5,0.75], which corresponds to an average click probability over all products

of 2p
48
≈ [0.02,0.03] per Wayfair’s recommendation.

E.2. Results

The implementation of the Threshold Acceptance Algorithm is identical to our earlier simulations and we

refer the reader to Section 5.2.2 for a detailed description. As in Section 5, we conducted the following

simulations 100 times for each event. First, we generated |T̃ | customers from the inferred distribution D̂ =

(p(z), D̂(z)
k , q̂(z))z∈Z . We applied our Threshold Acceptance Algorithm for each customer profile that was

generated assuming that customers arrive in a random order and then compared the algorithm’s performance

to that of Wayfair’s static ranking (πWF ) and the offline benchmark static ranking. Owing to a judicious

choice of the parameters mentioned earlier, the click behavior of customers on Wayfair’s ranking was a close

fit to the true click distribution observed in the data. For example, in all of our simulations, the percent

of customers hooked by Wayfair’s ranking was within [0.98,1.06] times the actual percentage of customers

hooked.

Figure 11 compares the performance of our algorithm and πWF to the static ranking output by the Greedy

Algorithm for OffAR (πg): specifically, (total number of hooked customers by our algorithm (or πWF )) / (total

number of hooked customers by πg). We see that our Threshold Acceptance Algorithm yields a significant

improvement over Wayfair’s static ranking. Averaged over 100 simulations, the number of customers hooked

by our algorithm was at least a multiplicative factor of 1.5-times the number hooked by Wayfair’s ranking for

all six events. There are two main reasons why we see such a significant improvement over Wayfair’s ranking.

First, unlike in Section 5, here we allow product interests to be correlated with first impression windows.

Our Threshold Acceptance Algorithm is able to exploit these dependencies better than Wayfair’s static,
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Figure 11 Box & whisker plots presenting the percent of total customers hooked by πg (the offline benchmark)

that are hooked by our algorithm and πWF

popularity-based ranking. Second, our assumptions on browsing and clicking behavior for these simulations

are less conservative than those in Section 5, and provide more opportunities for our algorithm to hook those

customers who were not hooked by Wayfair’s ranking. It is likely that the actual improvement in practice

lies somewhere between these results and the more conservative ones in Section 5.

Another key finding is that our Threshold Acceptance Algorithm’s performance is comparable to the offline

benchmark: On average over the six events, the number of customers hooked by our algorithm is at least 87%

of the amount hooked by πg. We note that the variability in the performance of our Threshold Acceptance

Algorithm is primarily due to the randomness that comes from sampling only L= 500 customers to estimate

the marginal benefit of each product. A surprising by-product of this variability is that in a few instances, our

algorithm actually outperforms the benchmark ranking, by up to 3%. Indeed, it is worth noting that since

the benchmark ranking πg is computed on the full distribution D̂, its performance can vary considerably

on individual populations that are randomly sampled from D̂. Beyond randomness, this can also occur due

to the fact that the Greedy Algorithm for OffAR is only a 1
2
-approximation to the true optimal ranking.25

25 Recall that the true optimal ranking is NP-Hard to compute even for a special case of our problem
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As a result, our algorithm may converge to a ranking better than πg by making some locally suboptimal

decisions.


